The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the existence and non-existence of traveling wave solutions of reaction-diffusion-advection equation with boundary conditions of mixed type in unbounded cylinder. By constructing new supper-sub solutions and applying monotone iteration method, we obtain existence of traveling wave solutions with wave velocity bigger than the “minimal speed”. For wave velocity smaller than the “minimal speed”, we find that traveling waves of exponential decay do not exist. Finally, we apply our results to KPP type nonlinearity.
@article{ZVMMF_2013_53_11_a5,
     author = {Meng Haixia},
     title = {The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1822},
     year = {2013},
     volume = {53},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/}
}
TY  - JOUR
AU  - Meng Haixia
TI  - The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1822
VL  - 53
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/
LA  - en
ID  - ZVMMF_2013_53_11_a5
ER  - 
%0 Journal Article
%A Meng Haixia
%T The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1822
%V 53
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/
%G en
%F ZVMMF_2013_53_11_a5
Meng Haixia. The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/

[1] H. Berestycki, B. Larrouturou, “A semilinear elliptic equation in a strip arising in a two-dimensional flame propagation model”, J. Reine Angew. Math., 396 (1989), 14–49 | MR

[2] H. Berestycki, B. Larrouturou, P. L. Lions, “Multidimensional traveling wave solutions of a flame propagation model”, Arch. Ration. Mech. Anal., 111 (1990), 33–49 | DOI | MR | Zbl

[3] H. Berestycki, L. Nirenberg, “Traveling fronts in cylinders”, Ann. Inst. H. Poincare Anal. Nonlineaire, 9 (1992), 497–572 | MR | Zbl

[4] C. B. Muratov, M. Novaga, “Front propagation in infinite cylinders. I: A variational approach”, Commun. Math. Sci., 6 (2008), 799–826 | DOI | MR | Zbl

[5] P. Borckmans, G. Dewol, A. De Wit, E. Dulos, J. Boissonade, F. Gauffre, P. De Kepper, “Diffusive instabilities and chemical reactions”, Int. J. Bifurcation Chaos, 12 (2002), 2307–2332 | DOI | MR | Zbl

[6] P. W. Bates, P. C. Fife, X. Ren, X. Wang, “Traveling waves in a convolution model for phase transition”, Arch. Ration. Mech. Anal., 138 (1997), 105–136 | DOI | MR | Zbl

[7] J. W. Bebernes, C. Li, Y. Li, “Travelling fronts in cylinders and their stability”, Rocky Mountain J. Math., 27 (1997), 123–150 | DOI | MR | Zbl

[8] J. Coville, L. Dupaigne, “Propagation speed of travelling fronts in nonlocal reaction-diffusion equations”, Nonlinear Anal. TMA, 60 (2005), 797–819 | DOI | MR | Zbl

[9] R. Gardner, “Existence of multidimensional traveling wave solutions of an initial boundary-value problem”, J. Differ. Equations, 61 (1986), 335–379 | DOI | MR | Zbl

[10] S. Heinze, G. Papanicolaou, A. Stevens, “Variational principles for propagation speeds in inhomogeneous media”, SIAM J. Appl. Math., 62 (2001), 129–148 | DOI | MR | Zbl

[11] W. T. Li, Z. C. Wang, J. Wu, “Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity”, J. Differ. Equations, 245 (2008), 102–129 | DOI | MR | Zbl

[12] S. Pan, “Traveling wave solutions in delayed diffusion systems via a cross iteration scheme”, Nonlinear Anal. RWA, 10 (2009), 2807–2818 | DOI | MR | Zbl

[13] J. M. Roquejoffre, “Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders”, Ann. Inst. H. Poincare Anal. Nonlineaire, 14 (1997), 499–552 | DOI | MR | Zbl

[14] H. Q. Zhao, S. L. Wu, “Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice”, Nonlinear Anal. RWA, 12 (2011), 1178–1191 | DOI | MR | Zbl

[15] J. M. Vega, “Travelling wavefronts of reaction-diffusion equations in cylindrical domains”, Commun. Partial Differ. Equations, 18 (1993), 505–531 | DOI | MR | Zbl

[16] H. X. Meng, “Existence of traveling wave solutions to a class of reaction-advection-diffusion equations in infinite cylinder”, J. Lanzhou Univ., 47 (2011), 94–98 | MR | Zbl

[17] H. Berestycki, L. Nirenberg, “On the methods of moving planes and the sliding method”, Bol. Soc. Brasil. Mat., 22 (1991), 1–37 | DOI | MR | Zbl

[18] H. Brezis, Analyse fonctionnelle: Theorie et applications, Masson, Paris, 1994 (in French) | MR | Zbl

[19] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “A study of the equation of diffusion with increase in the quantity of matter and its application to a biological problem”, Byull. Mosk. Gos. Univ., 1:6 (1937), 1–26 | MR