@article{ZVMMF_2013_53_11_a5,
author = {Meng Haixia},
title = {The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1822},
year = {2013},
volume = {53},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/}
}
TY - JOUR AU - Meng Haixia TI - The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1822 VL - 53 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/ LA - en ID - ZVMMF_2013_53_11_a5 ER -
%0 Journal Article %A Meng Haixia %T The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1822 %V 53 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/ %G en %F ZVMMF_2013_53_11_a5
Meng Haixia. The existence and non-existence of traveling waves of scalar reaction-diffusion-advection equation in unbounded cylinder. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a5/
[1] H. Berestycki, B. Larrouturou, “A semilinear elliptic equation in a strip arising in a two-dimensional flame propagation model”, J. Reine Angew. Math., 396 (1989), 14–49 | MR
[2] H. Berestycki, B. Larrouturou, P. L. Lions, “Multidimensional traveling wave solutions of a flame propagation model”, Arch. Ration. Mech. Anal., 111 (1990), 33–49 | DOI | MR | Zbl
[3] H. Berestycki, L. Nirenberg, “Traveling fronts in cylinders”, Ann. Inst. H. Poincare Anal. Nonlineaire, 9 (1992), 497–572 | MR | Zbl
[4] C. B. Muratov, M. Novaga, “Front propagation in infinite cylinders. I: A variational approach”, Commun. Math. Sci., 6 (2008), 799–826 | DOI | MR | Zbl
[5] P. Borckmans, G. Dewol, A. De Wit, E. Dulos, J. Boissonade, F. Gauffre, P. De Kepper, “Diffusive instabilities and chemical reactions”, Int. J. Bifurcation Chaos, 12 (2002), 2307–2332 | DOI | MR | Zbl
[6] P. W. Bates, P. C. Fife, X. Ren, X. Wang, “Traveling waves in a convolution model for phase transition”, Arch. Ration. Mech. Anal., 138 (1997), 105–136 | DOI | MR | Zbl
[7] J. W. Bebernes, C. Li, Y. Li, “Travelling fronts in cylinders and their stability”, Rocky Mountain J. Math., 27 (1997), 123–150 | DOI | MR | Zbl
[8] J. Coville, L. Dupaigne, “Propagation speed of travelling fronts in nonlocal reaction-diffusion equations”, Nonlinear Anal. TMA, 60 (2005), 797–819 | DOI | MR | Zbl
[9] R. Gardner, “Existence of multidimensional traveling wave solutions of an initial boundary-value problem”, J. Differ. Equations, 61 (1986), 335–379 | DOI | MR | Zbl
[10] S. Heinze, G. Papanicolaou, A. Stevens, “Variational principles for propagation speeds in inhomogeneous media”, SIAM J. Appl. Math., 62 (2001), 129–148 | DOI | MR | Zbl
[11] W. T. Li, Z. C. Wang, J. Wu, “Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity”, J. Differ. Equations, 245 (2008), 102–129 | DOI | MR | Zbl
[12] S. Pan, “Traveling wave solutions in delayed diffusion systems via a cross iteration scheme”, Nonlinear Anal. RWA, 10 (2009), 2807–2818 | DOI | MR | Zbl
[13] J. M. Roquejoffre, “Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders”, Ann. Inst. H. Poincare Anal. Nonlineaire, 14 (1997), 499–552 | DOI | MR | Zbl
[14] H. Q. Zhao, S. L. Wu, “Wave propagation for a reaction-diffusion model with a quiescent stage on a 2D spatial lattice”, Nonlinear Anal. RWA, 12 (2011), 1178–1191 | DOI | MR | Zbl
[15] J. M. Vega, “Travelling wavefronts of reaction-diffusion equations in cylindrical domains”, Commun. Partial Differ. Equations, 18 (1993), 505–531 | DOI | MR | Zbl
[16] H. X. Meng, “Existence of traveling wave solutions to a class of reaction-advection-diffusion equations in infinite cylinder”, J. Lanzhou Univ., 47 (2011), 94–98 | MR | Zbl
[17] H. Berestycki, L. Nirenberg, “On the methods of moving planes and the sliding method”, Bol. Soc. Brasil. Mat., 22 (1991), 1–37 | DOI | MR | Zbl
[18] H. Brezis, Analyse fonctionnelle: Theorie et applications, Masson, Paris, 1994 (in French) | MR | Zbl
[19] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “A study of the equation of diffusion with increase in the quantity of matter and its application to a biological problem”, Byull. Mosk. Gos. Univ., 1:6 (1937), 1–26 | MR