Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1804-1821

Voir la notice de l'article provenant de la source Math-Net.Ru

The parabolic functional differential equation $$ \frac{\partial u}{\partial t}=D\frac{\partial^2u}{\partial x^2}u+K\left(1+\gamma\cos u(x+\theta,t-T)\right) $$ is considered on the circle $[0,2\pi]$. Here, $D>0$, $T>0$, $K>0$, and $\gamma\in(0,1)$. Such equations arise in the modeling of nonlinear optical systems with a time delay $T>0$ and a spatial argument rotated by an angle $\theta\in[0,2\pi)$ in the nonlocal feedback loop in the approximation of a thin circular layer. The goal of this study is to describe spatially inhomogeneous rotating-wave solutions bifurcating from a homogeneous stationary solution in the case of a Andronov–Hopf bifurcation. The existence of such waves is proved by passing to a moving coordinate system, which makes it possible to reduce the problem to the construction of a nontrivial solution to a periodic boundary value problem for a stationary delay differential equation. The existence of rotating waves in an annulus resulting from a Andronov–Hopf bifurcation is proved, and the leading coefficients in the expansion of the solution in powers of a small parameter are obtained. The conditions for the stability of waves are derived by constructing a normal form for the Andronov–Hopf bifurcation for the functional differential equation under study.
@article{ZVMMF_2013_53_11_a4,
     author = {A. V. Razgulin and T. E. Romanenko},
     title = {Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1804--1821},
     publisher = {mathdoc},
     volume = {53},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/}
}
TY  - JOUR
AU  - A. V. Razgulin
AU  - T. E. Romanenko
TI  - Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1804
EP  - 1821
VL  - 53
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/
LA  - ru
ID  - ZVMMF_2013_53_11_a4
ER  - 
%0 Journal Article
%A A. V. Razgulin
%A T. E. Romanenko
%T Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1804-1821
%V 53
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/
%G ru
%F ZVMMF_2013_53_11_a4
A. V. Razgulin; T. E. Romanenko. Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1804-1821. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/