Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1804-1821 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The parabolic functional differential equation $$ \frac{\partial u}{\partial t}=D\frac{\partial^2u}{\partial x^2}u+K\left(1+\gamma\cos u(x+\theta,t-T)\right) $$ is considered on the circle $[0,2\pi]$. Here, $D>0$, $T>0$, $K>0$, and $\gamma\in(0,1)$. Such equations arise in the modeling of nonlinear optical systems with a time delay $T>0$ and a spatial argument rotated by an angle $\theta\in[0,2\pi)$ in the nonlocal feedback loop in the approximation of a thin circular layer. The goal of this study is to describe spatially inhomogeneous rotating-wave solutions bifurcating from a homogeneous stationary solution in the case of a Andronov–Hopf bifurcation. The existence of such waves is proved by passing to a moving coordinate system, which makes it possible to reduce the problem to the construction of a nontrivial solution to a periodic boundary value problem for a stationary delay differential equation. The existence of rotating waves in an annulus resulting from a Andronov–Hopf bifurcation is proved, and the leading coefficients in the expansion of the solution in powers of a small parameter are obtained. The conditions for the stability of waves are derived by constructing a normal form for the Andronov–Hopf bifurcation for the functional differential equation under study.
@article{ZVMMF_2013_53_11_a4,
     author = {A. V. Razgulin and T. E. Romanenko},
     title = {Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1804--1821},
     year = {2013},
     volume = {53},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/}
}
TY  - JOUR
AU  - A. V. Razgulin
AU  - T. E. Romanenko
TI  - Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1804
EP  - 1821
VL  - 53
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/
LA  - ru
ID  - ZVMMF_2013_53_11_a4
ER  - 
%0 Journal Article
%A A. V. Razgulin
%A T. E. Romanenko
%T Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1804-1821
%V 53
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/
%G ru
%F ZVMMF_2013_53_11_a4
A. V. Razgulin; T. E. Romanenko. Rotating waves in parabolic functional differential equations with rotation of spatial argument and time delay. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1804-1821. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a4/

[1] Gibbs H., Optical bistability: controlling light with light, Academic Press, Orlando, 1985

[2] Otsuka K., Ikeda K., “Cooperative dynamics and functions in a collective nonlinear optical element system”, Phys. Rev. A, 39:10 (1989), 5209–5228 | DOI

[3] Vorontsov M. A., “Problems of large neurodynamics system modeling: Optical synergetics and neural networks”, SPIE, 1402 (1990), 116–144 | DOI

[4] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., et al., “Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Optical Soc. Amer. Ser. B, 9:1 (1992), 78–90 | DOI

[5] Ikeda K., Daido H., Okimoto O., “Optical turbulence: chaotic behavior of transmitted light from a ring cavity”, Phys. Rev. Lett., 45 (1980), 709–712 | DOI

[6] Montemezzani G., Zhou G., Anderson D. Z., “Self-organized learning of purely temporal information in a photorefractive optical resonator”, Optics Letters, 19:23 (1994), 2012–2014 | DOI

[7] Le Berre M., Ressayre E., Tallet A., “Lyapunov analysis of the Ruell–Takens route to chaos in an optical retarded differential system”, Optics Communications, 72:1 (1989), 123–128 | DOI

[8] Vorontsov M. A., Iroshnikov N. G., “Nonlinear dynamics of neuromorphic optical system with spatio-temporal interactions”, Optical Memory and Neural Networks, SPIE, 1621, 1991, 292–298

[9] Iroshnikov N. G., Vorontsov M. A., “Transverse rotating waves in the nonlinear optical system with spatial and temporal delay”, Frontiers in nonlinear optics, in memoriam of Serge Akhmanov, eds. H. Walter, N. Koroteev, M. Scully. IOP, London, 1992, 261–278

[10] Vorontsov M. A., Razgulin A. V., “Properties of global attractor in nonlinear optical system having nonlocal interactions”, Photonics and Optoelectronics, 1:2 (1993), 103–111

[11] Chesnokov S. S., Rybak A. A., “Spatiotemporal Chaotic behavior of time-delayed nonlinear optical systems”, Laser Physics, 10:5 (2000), 1061–1068

[12] Razgulin A. V., “The attractor of the delayed functional-differential diffusion equation”, Comput. Math. and Model., 8:2 (1997), 181–186 | DOI | MR

[13] Razgulin A. V., “Finite-dimensional dynamics of distributed optical system with delayed feedback”, Comput. Math. Appl., 40:12 (2000), 1405–1418 | DOI | MR | Zbl

[14] Razgulin A. V., “Ob odnom klasse funktsionalno-differentsialnykh parabolicheskikh uravnenii nelineinoi optiki”, Differents. ur-niya, 36:3 (2000), 400–407 | MR | Zbl

[15] Razgulin A. V., “O parabolicheskikh funktsionalno-differentsialnykh uravneniyakh s upravlyaemym preobrazovaniem prostranstvennykh argumentov”, Dokl. RAN, 403:4 (2005), 448–451 | MR | Zbl

[16] Razgulin A. V., “Proektsionno-raznostnaya skhema dlya parabolicheskogo funktsionalno-differentsialnogo uravneniya s dvumernym preobrazovaniem argumentov”, Zh. vychisl. matem. i matem. fiz., 45:10 (2005), 1848–1859 | MR | Zbl

[17] Razgulin A. V., “Zadacha upravleniya dvumernym preobrazovaniem prostranstvennykh argumentov v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differents. ur-niya, 42:8 (2006), 1078–1091 | MR | Zbl

[18] Kolmogorov A. N., Petrovskii I. G., Piskunov N. S., “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, ego primenenie k odnoi biologicheskoi probleme”, Byull. MGU (A), 1:6 (1937), 1–26

[19] Volpert A. I., Volpert Vit. A., Volpert Vlad. A., Traveling wave solutions of parabolic systems, Translations of mathematical monographs, 140, AMS, Providence, Rhode Island, 2000 | MR

[20] Fiedler B., Scheel A., “Spatio-temporal dynamics of reaction-diffusion patterns”, Trends in Nonlinear Analysis, eds. M. Kirkilionis, S. Kromker, R. Rannacher, F. Tomi, Springer, Berlin, 2003 | MR

[21] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[22] Kaschenko S. A., “Asimptotika prostranstvenno-neodnorodnykh struktur v kogerentnykh nelineino-opticheskikh sistemakh”, Zh. vychisl. matem. i matem. fiz., 31:3 (1991), 467–473 | MR

[23] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:1 (1993), 69–80 | MR | Zbl

[24] Razgulin A. V., “Ustoichivost bifurkatsionnykh avtokolebanii v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:10 (1993), 1499–1510 | MR

[25] Grigorieva E. V., Haken H., Kashchenko S. A., Pelster A., “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Physica D, 125 (1999), 123–141 | DOI | Zbl

[26] Belan E. P., “O vzaimodeistvii beguschikh voln v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differents. ur-niya, 40:5 (2004), 645–654 | MR | Zbl

[27] Kolesov A. Yu., Rozov N. Kh., “Opticheskaya bufernost i mekhanizmy ee vozniknoveniya”, Teoreticheskaya i matem. fiz., 140:1 (2004), 14–28 | DOI | MR | Zbl

[28] Belan E. P., “O dinamike beguschikh voln v parabolicheskom uravnenii s preobrazovaniem sdviga prostranstvennoi peremennoi”, Zh. matem. fiz., analiza, geometrii, 1:1 (2005), 3–34

[29] Razgulin A. V., “Rotatsionnye volny v opticheskoi sisteme s dvumernoi obratnoi svyazyu”, Matem. modelirovanie, 5:4 (1993), 105–119 | MR | Zbl

[30] Razgulin A. V., “Bifurcational light structures in nonlinear optical system with nonlocal interactions”, Visual Information Processing II, SPIE, 1961, 1993, 24–250

[31] Belan E. P., Lykova O. B., “Vraschayuschiesya struktury v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differents. ur-niya, 40:10 (2004), 1348–1357 | MR | Zbl

[32] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Analysis: TMA, 32:2 (1998), 261–278 | DOI | MR | Zbl

[33] Skubachevskii A. L., “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. ur-niya, 34:10 (1998), 1394–1401 | MR | Zbl

[34] Schaaf K., “Asymptotic behavior and traveling wave solutions for parabolic functional differential equations”, Trans. Amer. Math. Soc., 302 (1987), 587–615 | MR | Zbl

[35] Zou X., Wu J., “Existence of travelling wave fronts in delayed reaction-diffusion systems via the monotone iteration methods”, Proc. of the Amer. Math. Society, 125:9 (1997), 2589–2598 | DOI | MR | Zbl

[36] Mei M., Lin C.-K., Lin C.-T., So J. W.-H., “Traveling wavefronts for time-delayed reaction-diffusion equation. I: Local nonlinearity”, J. Different. Equat., 247 (2009), 495–510 | DOI | MR | Zbl

[37] Faria T., Huang W., Wu J., “Travelling waves for delayed reaction-diffusion equations with global response”, Proc. of Royal Soc. A, 462 (2006), 229–261 | DOI | MR | Zbl

[38] Wu J., Xia H., “Rotating waves in neutral partial functional differential equations”, J. Dynamics and Different. Equat., 11:2 (1999), 209–238 | DOI | MR | Zbl

[39] Gourley S. A., So J. W.-H., Wu J. H., “Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics”, J. Math. Sci., 124:4 (2004), 5119–5153 | DOI | MR

[40] Schley D., “Rotating Waves in Scalar Equations with Neumann Boundary Conditions”, Math. Comput. Modell., 37 (2003), 767–778 | DOI | MR | Zbl

[41] Yoshida K., “The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology”, Hiroshima Math. J., 12 (1982), 321–348 | MR | Zbl

[42] Faria T., “Stability and bifurcation for a delayed predator-prey model and the effect of diffusion”, J. Math. Analys. Appl., 254 (2001), 433–463 | DOI | MR | Zbl

[43] Busenberg S., Huang W., “Stability and Hopf bifurcation for a population delay model with diffusion effects”, J. Different. Equat., 124 (1996), 80–107 | DOI | MR | Zbl

[44] Zhou L., Tang Y., Hussein S., “Stability and Hopf bifurcation for a delay competition diffusion system”, Chaos, Solitons and Fractals, 14 (2002), 1201–1225 | DOI | MR | Zbl

[45] Gourley S. A., Britton N. F., “A predator-prey reaction-diffusion system with nonlocal effects”, J. Math. Biol., 34 (1996), 297–333 | MR | Zbl

[46] Britton N. F., “Dpatial Structures and Periodic Travelling Waves in an Integro-Differential Reaction-Diffusion Population Model”, SIAM J. Appl. Math., 50:6 (1990), 1663–1688 | DOI | MR | Zbl

[47] Faria T., “Normal forms for semilinear functional differential equations in Banach spaces and applications”, Discrete and Continuous Dynamical Systems, 7:1 (2001), 155–176 | DOI | MR | Zbl

[48] Hale J., Theory of functional differential equations, Springer, New York, 1977 | MR | Zbl

[49] Nirenberg L., Topics in nonlinear functional analysis, American Mathematical Society, Providence, 2001 | MR | Zbl

[50] Minh N. V., Wu J., “Invariant manifolds of partial functional differential equations”, J. Different. Equat., 198 (2004), 381–421 | DOI | MR | Zbl

[51] Faria T., Magãlhaes L. T., “Normal forms for retarded functional differential equations with parameters and applications to Hopf singularity”, J. Different. Equat., 122 (1995), 181–200 | DOI | MR | Zbl

[52] Gukenkheimer Dzh., Kholmv F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, IKI, M.–Izhevsk, 2002