@article{ZVMMF_2013_53_11_a3,
author = {R. Z. Dautov and E. M. Fedotov},
title = {Discontinuous mixed penalty-free {Galerkin} method for second-order quasilinear elliptic equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1791--1803},
year = {2013},
volume = {53},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/}
}
TY - JOUR AU - R. Z. Dautov AU - E. M. Fedotov TI - Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1791 EP - 1803 VL - 53 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/ LA - ru ID - ZVMMF_2013_53_11_a3 ER -
%0 Journal Article %A R. Z. Dautov %A E. M. Fedotov %T Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1791-1803 %V 53 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/ %G ru %F ZVMMF_2013_53_11_a3
R. Z. Dautov; E. M. Fedotov. Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1791-1803. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/
[1] Lyashko A. D., Fedotov E. M., “Predelnye skhemy Galerkina–Petrova dlya uravneniya konvektsii-diffuzii”, Differents. uravneniya, 46:7 (2009), 1033–1043
[2] Fedotov E. M., “Predelnye skhemy Galerkina–Petrova dlya nelineinogo uravneniya konvektsii-diffuzii”, Differents. uravneniya, 46:7 (2010), 1033–1043 | MR | Zbl
[3] Gockburn B., Dong B., “An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems”, J. Sci. Comput., 32 (2007), 233–262 | DOI | MR
[4] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Discontinuous Galerkin methods for elliptic problems”, Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Comput. Sci. Engrg., 11, eds. Cockburn D., Karnaidakis G. E., Shu C.-W., Springer-Verlag, New York, 2000, 89–101 | DOI | MR | Zbl
[5] Castillo P., Cockburn B., Perugia I., Schotzou D., “An a priori error analysis of the local discontinuous Galerkin method for elliptic problems”, SIAM J. Numer. Anal., 38:5 (2001), 1676–1706 | DOI | MR
[6] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl
[7] Castillo P., “Performance of discontinuous Galerkin methods for elliptic PDEs”, SIAM J. Sci. Comput., 24 (2002), 524–547 | DOI | MR | Zbl
[8] Houston P., Robson J., Süli E., “Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I: The scalar case”, IMA J. Numer. Anal., 25 (2005), 726–749 | DOI | MR | Zbl
[9] Ortner C., Süli E., Discontinuous Galerkin finite element approximation of nonlinear secondorder elliptic and hyperbolic systems, Tech. Rep. NA-06/05, Oxford University Computing Laboratory, 2006 | MR
[10] Gudi T., Nataraj N., Pani A. K., “Hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems”, Numer. Math., 109 (2008), 233–268 | DOI | MR | Zbl
[11] Burman E., Ern A., “Numerical analysis discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian”, C. R. Acad. Sci. Paris. Ser. I, 346 (2008), 1013–1016 | DOI | MR | Zbl
[12] Chunjia B., Yanping L., “Discontinuous galerkin method for monotone nonlinear elliptic problems”, Int. J. Numer. Anal. Mod., 9 (2012), 999–1024 | MR | Zbl
[13] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991 | MR | Zbl
[14] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[15] Brenner S. C., “Poincare–Friedrichs inequalities for piecewise $H^1$ functions”, SIAM J. Numer. Anal., 41 (2003), 306–324 | DOI | MR | Zbl
[16] Brezzi F., Manzini G., Marini D., Pietra P., Russo A., “Discontinuous Galerkin approximations for elliptic problems”, Numerical Methods for Partial Differential Equations, 16:4 (2000), 365–378 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[17] Rivière B., Wheeler M., Girault V., “A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems”, SIAM J. Numer. Anal., 39:3 (2002), 902–931 | DOI | MR
[18] Timerbaev M. R., “Konechnoelementnaya approksimatsiya v vesovykh prostranstvakh Soboleva”, Izv. vyssh. uchebn. zavedenii. Matematika, 2000, no. 11, 76–84 | MR
[19] Scott L. R., Zhang S., “Finite element interpolation of nonsmooth functions satisgying boundary conditions”, Math. Comp., 1990, no. 54, 483–493 | DOI | MR | Zbl
[20] Peraire J., Persson P.-O., “The compact discontinuous Galerkin (CDG) method for elliptic problems”, SIAM J. Sci. Comput., 30:4 (2008), 1806–1824 | DOI | MR