Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1791-1803 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Discrete schemes for finding an approximate solution of the Dirichlet problem for a second-order quasilinear elliptic equation in conservative form are investigated. The schemes are based on the discontinuous Galerkin method (DG schemes) in a mixed formulation and do not involve internal penalty parameters. Error estimates typical of DG schemes with internal penalty are obtained. A new result in the analysis of the schemes is that they are proved to satisfy the Ladyzhenskaya–Babuska–Brezzi condition (inf-sup) condition.
@article{ZVMMF_2013_53_11_a3,
     author = {R. Z. Dautov and E. M. Fedotov},
     title = {Discontinuous mixed penalty-free {Galerkin} method for second-order quasilinear elliptic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1791--1803},
     year = {2013},
     volume = {53},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - E. M. Fedotov
TI  - Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1791
EP  - 1803
VL  - 53
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/
LA  - ru
ID  - ZVMMF_2013_53_11_a3
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A E. M. Fedotov
%T Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1791-1803
%V 53
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/
%G ru
%F ZVMMF_2013_53_11_a3
R. Z. Dautov; E. M. Fedotov. Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1791-1803. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/

[1] Lyashko A. D., Fedotov E. M., “Predelnye skhemy Galerkina–Petrova dlya uravneniya konvektsii-diffuzii”, Differents. uravneniya, 46:7 (2009), 1033–1043

[2] Fedotov E. M., “Predelnye skhemy Galerkina–Petrova dlya nelineinogo uravneniya konvektsii-diffuzii”, Differents. uravneniya, 46:7 (2010), 1033–1043 | MR | Zbl

[3] Gockburn B., Dong B., “An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems”, J. Sci. Comput., 32 (2007), 233–262 | DOI | MR

[4] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Discontinuous Galerkin methods for elliptic problems”, Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Comput. Sci. Engrg., 11, eds. Cockburn D., Karnaidakis G. E., Shu C.-W., Springer-Verlag, New York, 2000, 89–101 | DOI | MR | Zbl

[5] Castillo P., Cockburn B., Perugia I., Schotzou D., “An a priori error analysis of the local discontinuous Galerkin method for elliptic problems”, SIAM J. Numer. Anal., 38:5 (2001), 1676–1706 | DOI | MR

[6] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl

[7] Castillo P., “Performance of discontinuous Galerkin methods for elliptic PDEs”, SIAM J. Sci. Comput., 24 (2002), 524–547 | DOI | MR | Zbl

[8] Houston P., Robson J., Süli E., “Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I: The scalar case”, IMA J. Numer. Anal., 25 (2005), 726–749 | DOI | MR | Zbl

[9] Ortner C., Süli E., Discontinuous Galerkin finite element approximation of nonlinear secondorder elliptic and hyperbolic systems, Tech. Rep. NA-06/05, Oxford University Computing Laboratory, 2006 | MR

[10] Gudi T., Nataraj N., Pani A. K., “Hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems”, Numer. Math., 109 (2008), 233–268 | DOI | MR | Zbl

[11] Burman E., Ern A., “Numerical analysis discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian”, C. R. Acad. Sci. Paris. Ser. I, 346 (2008), 1013–1016 | DOI | MR | Zbl

[12] Chunjia B., Yanping L., “Discontinuous galerkin method for monotone nonlinear elliptic problems”, Int. J. Numer. Anal. Mod., 9 (2012), 999–1024 | MR | Zbl

[13] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991 | MR | Zbl

[14] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[15] Brenner S. C., “Poincare–Friedrichs inequalities for piecewise $H^1$ functions”, SIAM J. Numer. Anal., 41 (2003), 306–324 | DOI | MR | Zbl

[16] Brezzi F., Manzini G., Marini D., Pietra P., Russo A., “Discontinuous Galerkin approximations for elliptic problems”, Numerical Methods for Partial Differential Equations, 16:4 (2000), 365–378 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Rivière B., Wheeler M., Girault V., “A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems”, SIAM J. Numer. Anal., 39:3 (2002), 902–931 | DOI | MR

[18] Timerbaev M. R., “Konechnoelementnaya approksimatsiya v vesovykh prostranstvakh Soboleva”, Izv. vyssh. uchebn. zavedenii. Matematika, 2000, no. 11, 76–84 | MR

[19] Scott L. R., Zhang S., “Finite element interpolation of nonsmooth functions satisgying boundary conditions”, Math. Comp., 1990, no. 54, 483–493 | DOI | MR | Zbl

[20] Peraire J., Persson P.-O., “The compact discontinuous Galerkin (CDG) method for elliptic problems”, SIAM J. Sci. Comput., 30:4 (2008), 1806–1824 | DOI | MR