Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1791-1803

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete schemes for finding an approximate solution of the Dirichlet problem for a second-order quasilinear elliptic equation in conservative form are investigated. The schemes are based on the discontinuous Galerkin method (DG schemes) in a mixed formulation and do not involve internal penalty parameters. Error estimates typical of DG schemes with internal penalty are obtained. A new result in the analysis of the schemes is that they are proved to satisfy the Ladyzhenskaya–Babuska–Brezzi condition (inf-sup) condition.
@article{ZVMMF_2013_53_11_a3,
     author = {R. Z. Dautov and E. M. Fedotov},
     title = {Discontinuous mixed penalty-free {Galerkin} method for second-order quasilinear elliptic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1791--1803},
     publisher = {mathdoc},
     volume = {53},
     number = {11},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/}
}
TY  - JOUR
AU  - R. Z. Dautov
AU  - E. M. Fedotov
TI  - Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1791
EP  - 1803
VL  - 53
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/
LA  - ru
ID  - ZVMMF_2013_53_11_a3
ER  - 
%0 Journal Article
%A R. Z. Dautov
%A E. M. Fedotov
%T Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1791-1803
%V 53
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/
%G ru
%F ZVMMF_2013_53_11_a3
R. Z. Dautov; E. M. Fedotov. Discontinuous mixed penalty-free Galerkin method for second-order quasilinear elliptic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1791-1803. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a3/