Nonlinear stability of a parabolic velocity profile in a plane periodic channel
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1903-1922 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An inviscid or viscous incompressible flow with a general parabolic velocity profile in an infinite plane periodic channel with parallel walls that can move is considered with the impermeability conditions (for the Euler equations) or the no-slip conditions (for the Navier–Stokes equations). The nonlinear (for the original equations) and nonlocal (for all Reynolds numbers) stability of the unperturbed flow with respect to arbitrary two-dimensional smooth perturbations of the initial velocity field is established.
@article{ZVMMF_2013_53_11_a11,
     author = {O. V. Troshkin},
     title = {Nonlinear stability of a parabolic velocity profile in a plane periodic channel},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1903--1922},
     year = {2013},
     volume = {53},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a11/}
}
TY  - JOUR
AU  - O. V. Troshkin
TI  - Nonlinear stability of a parabolic velocity profile in a plane periodic channel
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1903
EP  - 1922
VL  - 53
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a11/
LA  - ru
ID  - ZVMMF_2013_53_11_a11
ER  - 
%0 Journal Article
%A O. V. Troshkin
%T Nonlinear stability of a parabolic velocity profile in a plane periodic channel
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1903-1922
%V 53
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a11/
%G ru
%F ZVMMF_2013_53_11_a11
O. V. Troshkin. Nonlinear stability of a parabolic velocity profile in a plane periodic channel. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1903-1922. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a11/

[1] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[2] Yudovich V. I., “Dvumernaya nestatsionarnaya zadacha protekaniya idealnoi zhidkosti cherez zadannuyu oblast”, Matem. sb., 64 (1964), 562–588 | MR

[3] Wolibner W., “On theoreme sur l'existence du movement plan d'un fluid parfait, homogene, incompressible, pendant um temps infiniment logue”, Math. Z., 37 (1933), 698–726 | DOI | MR

[4] Kato T., “On classical solutions of the two dimensional nonstationary Euler equation”, Arch. Rat. Mech. Analys., 25:3 (1967), 188–200 | DOI | MR | Zbl

[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, GU, Novosibirsk, 1950, 255 pp. | MR

[6] Dezin A. A., “Invariantnye formy i nekotorye strukturnye svoistva gidrodinamicheskikh uravnenii Eilera”, Zeit. fur Anal. Und ihre Anwendungen, 2:5 (1983), 401–409 | MR | Zbl

[7] Troshkin O. V., “O topologicheskom analize struktury gidrodinamicheskikh techenii”, UMN, 43:4 (262) (1988), 129–158 | MR

[8] Troshkin O. V., “Dvumernaya zadacha o protekanii dlya statsionarnykh uravnenii Eilera”, Matem. sb., 180:3 (1989), 354–374

[9] Lin Tszya-tszyao, Teoriya gidrodinamicheskoi ustoichivosti, Izd-vo inostr. lit., M., 1974

[10] Dzhozef D., Ustoichivost dvizhenii zhidkosti, Mir, M., 1981, 638 pp.

[11] Monin A. S., “Gidrodinamicheskaya neustoichivost”, UFN, 150:1 (1986), 61–105 | DOI

[12] Arnold V. I., Meshalkin A. D., “Seminar A. N. Kolmogorova po izbrannym voprosam analiza (1958–1959)”, UMN, 15:1 (1960), 247–250

[13] Gledzer E. B., Dolzhanskii F. V., Obukhov A. M., Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 1981 | MR | Zbl

[14] Reynolds O., “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels”, Phil. Trans. R. Soc. Lond., 174 (1883), 935–982 | DOI

[15] Miln-Tomson L. N., Teoreticheskaya gidrodinamika, Mir, M., 1964

[16] Loitsyanskii L. G., Mekhanika zhidkosti i gazjd, Nauka, M., 1987

[17] Arnold V. I., “Ob usloviyakh ustoichivosti ploskikh statsionarnykh krivolineinykh techenii idealnoi zhidkosti”, Dokl. AN SSSR, 162:5 (1965), 975–978 | MR | Zbl

[18] Arnold V. I., “Sur la geometrie differentielle des groupes de Lie de dimension infinite et ses applications a l'hydrodynamique de fluids parfaits”, Ann. Inst. Fourier (Grenoble), 16 (1966), 319–361 | DOI | MR

[19] Troshkin O. V., “Algebraicheskaya struktura dvumernykh statsionarnykh uravnenii Nave–Stoksa i nelokalnye teoremy edinstvennosti”, Dokl. AN SSSR, 298:6 (1988), 1372–1376 | Zbl

[20] Troshkin O. V., “Dissipativnyi volchok na slabokompaktnoi algebre Li i ustoichivost osnovnykh techenii v ploskom kanale”, Dokl. AN, 442:2 (2012), 184–189 | MR

[21] Troshkin O. V., “K nelineinoi ustoichivosti techenii Kuetta, Puazeilya i Kolmogorova v ploskom kanale”, Dokl. AN, 443:1 (2012), 29–33 | Zbl

[22] Romanov V. A., “Ustoichivost ploskoparallelnogo techeniya Kuetta”, Funk. analiz i ego prilozheniya, 7:2 (1973), 62–73 | MR

[23] Ivanilov Yu. P., Yakovlev G. N., “O bifurkatsii techeniya zhidkosti mezhdu vraschayuschimisya tsilindrami”, PMM, 30 (1966), 910–916 | Zbl

[24] Velte W., “Stabilitat und Verzweigung stationarer Losungen der Navier–Stokkesschen Gleihungen bein Taylor-problem”, Arch. Rat. Mech. Anal., 22 (1966), 1–14 | DOI | MR | Zbl

[25] Meshalkin L. D., Sinai Ya. G., “Issledovanie ustoichivosti statsionarnogo resheniya odnoi sistemy uravnenii ploskogo dvizheniya neszhimaemoi vyazkoi zhidkosti”, PMM, 25:6 (1961), 1140–1143 | MR | Zbl

[26] Yudovich V. I., “Primer rozhdeniya vtorichnogo statsionarnogo ili periodicheskogo techeniya pri potere ustoichivosti laminarnogo techeniya vyazkoi neszhimaemoi zhidkosti”, PMM, 29:3 (1965), 453–467 | Zbl

[27] Oparina E. I., Troshkin O. V., “Ustoichivost techeniya Kolmogorova v kanale s tverdymi stenkami”, Dokl. AN, 398:4 (2004), 487–491

[28] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR

[29] Hoffman J., Johnson C., Computational turbulent incompressible flow, Springer, New York, 2007 | MR

[30] Belotserkovskii O. M., Konyukhov A. V., Oparin A. M. i dr., “O strukturirovanii khaosa”, Zh. vychisl. matem. i matem. fiz., 51:2 (2011), 237–250 | MR | Zbl

[31] Belotserkovskii O. M., Denisenko V. V., Konyukhov A. V. i dr., “Chislennoe issledovanie ustoichivosti techeniya Teilora mezhdu dvumya tsilindrami v dvumernom sluchae”, Zh. vychisl. matem. i matem. fiz., 49:4 (2009), 754–768 | MR | Zbl

[32] Krylov A. L., “Ob ustoichivosti techeniya Puazeilya v ploskom kanale”, Dokl. AN SSSR, 159:5 (1964), 978–981 | MR

[33] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (77) (1957), 3–122 | MR | Zbl

[34] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[35] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979, 759 pp. | MR

[36] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Izd. 3-e, Nauka, M., 1989, 472 pp. | MR

[37] Troshkin O. V., Nontraditional methods in mathematical hydrodynamics, Translations of Math. Monographs, 144, AMS, Providence, RI, ISA, 1995, 197 pp. | MR | Zbl