Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1894-1902 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A previously developed second-order accurate quasi-monotone scheme is tested using the Riemann problem with high initial pressure and density ratios. For shock waves, the scheme is conservative, while, in rarefaction waves, the isentropic condition along the trajectory of a Lagrangian particle is used instead of conservativeness in energy. It is shown that the shock front position produced by the scheme has no considerable errors typical of a representative set of conservative quasi-monotone schemes of various orders of accuracy. The numerical accuracy is significantly improved in the case of moving grids with a contact discontinuity explicitly introduced in the form of a grid node. It is shown how the method can be extended to cover the multidimensional case and the presence of additional terms in the original equations.
@article{ZVMMF_2013_53_11_a10,
     author = {V. I. Gryn' and A. A. Frolova and A. A. Charakhch'yan},
     title = {Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible {Euler} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1894--1902},
     year = {2013},
     volume = {53},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/}
}
TY  - JOUR
AU  - V. I. Gryn'
AU  - A. A. Frolova
AU  - A. A. Charakhch'yan
TI  - Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1894
EP  - 1902
VL  - 53
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/
LA  - ru
ID  - ZVMMF_2013_53_11_a10
ER  - 
%0 Journal Article
%A V. I. Gryn'
%A A. A. Frolova
%A A. A. Charakhch'yan
%T Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1894-1902
%V 53
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/
%G ru
%F ZVMMF_2013_53_11_a10
V. I. Gryn'; A. A. Frolova; A. A. Charakhch'yan. Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1894-1902. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/

[1] Huaslong T., Tiegang L., “A note on the conservative schemes for the Euler equations”, J. Comput. Phys., 218 (2006), 451–459 | DOI

[2] Xu K., “A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method”, J. Comput. Phys., 171 (2001), 289–335 | DOI | MR | Zbl

[3] Jiang S. C., Shu S. W., “Efficient implementation of weighted ENO scheme”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl

[4] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR

[5] Charakhchyan A. A., “Effekt lozhnoi kumulyatsii dlya skhemy S. K. Godunova na podvizhnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 28:1 (1988), 142–146 | MR | Zbl

[6] Charakhchyan A. A., “Nekonservativnaya raznostnaya skhema dlya uravnenii gazovoi dinamiki na baze skhemy S. K. Godunova”, Vopr. atomnoi nauki i tekhn. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 2, TsNIIatominform, M., 1988, 22–28 | MR

[7] Charakhchyan A. A., “Pochti konservativnye raznostnye skhemy dlya uravnenii gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 33:11 (1993), 1681–1692 | MR | Zbl

[8] Charakhchyan A. A., “Ob algoritmakh rascheta raspada razryva dlya skhemy S. K. Godunova”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 782–796 | MR | Zbl

[9] Milyavskii V. V., Fortov V. E., Frolova A. A. i dr., “Raschet udarnogo szhatiya poristykh sred v konicheskikh tverdotelnykh mishenyakh s vykhodnym otverstiem”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 913–931 | MR

[10] Hirt C. W., Amsden A. A., Cook J. L., “An arbitrary lagrangian-eulerian computing method for all flow speeds”, J. Comput. Phys., 14:3 (1974), 227–253 | DOI | MR | Zbl

[11] Van Leer B., “A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI

[12] Rodionov A. V., “Povyshenie poryadka approksimatsii skhemy S. K. Godunova”, Zh. vychisl. matem. i matem. fiz., 27:12 (1987), 1853–1860 | MR | Zbl

[13] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[14] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[15] Godunov S. K., Zabrodin A. V., Prokopov G. P. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl