@article{ZVMMF_2013_53_11_a10,
author = {V. I. Gryn' and A. A. Frolova and A. A. Charakhch'yan},
title = {Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible {Euler} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1894--1902},
year = {2013},
volume = {53},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/}
}
TY - JOUR AU - V. I. Gryn' AU - A. A. Frolova AU - A. A. Charakhch'yan TI - Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1894 EP - 1902 VL - 53 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/ LA - ru ID - ZVMMF_2013_53_11_a10 ER -
%0 Journal Article %A V. I. Gryn' %A A. A. Frolova %A A. A. Charakhch'yan %T Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1894-1902 %V 53 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/ %G ru %F ZVMMF_2013_53_11_a10
V. I. Gryn'; A. A. Frolova; A. A. Charakhch'yan. Nonconservative scheme with the isentropic condition in rarefaction waves as applied to the compressible Euler equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 11, pp. 1894-1902. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_11_a10/
[1] Huaslong T., Tiegang L., “A note on the conservative schemes for the Euler equations”, J. Comput. Phys., 218 (2006), 451–459 | DOI
[2] Xu K., “A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method”, J. Comput. Phys., 171 (2001), 289–335 | DOI | MR | Zbl
[3] Jiang S. C., Shu S. W., “Efficient implementation of weighted ENO scheme”, J. Comput. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[4] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1980 | MR
[5] Charakhchyan A. A., “Effekt lozhnoi kumulyatsii dlya skhemy S. K. Godunova na podvizhnykh setkakh”, Zh. vychisl. matem. i matem. fiz., 28:1 (1988), 142–146 | MR | Zbl
[6] Charakhchyan A. A., “Nekonservativnaya raznostnaya skhema dlya uravnenii gazovoi dinamiki na baze skhemy S. K. Godunova”, Vopr. atomnoi nauki i tekhn. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 2, TsNIIatominform, M., 1988, 22–28 | MR
[7] Charakhchyan A. A., “Pochti konservativnye raznostnye skhemy dlya uravnenii gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 33:11 (1993), 1681–1692 | MR | Zbl
[8] Charakhchyan A. A., “Ob algoritmakh rascheta raspada razryva dlya skhemy S. K. Godunova”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 782–796 | MR | Zbl
[9] Milyavskii V. V., Fortov V. E., Frolova A. A. i dr., “Raschet udarnogo szhatiya poristykh sred v konicheskikh tverdotelnykh mishenyakh s vykhodnym otverstiem”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 913–931 | MR
[10] Hirt C. W., Amsden A. A., Cook J. L., “An arbitrary lagrangian-eulerian computing method for all flow speeds”, J. Comput. Phys., 14:3 (1974), 227–253 | DOI | MR | Zbl
[11] Van Leer B., “A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI
[12] Rodionov A. V., “Povyshenie poryadka approksimatsii skhemy S. K. Godunova”, Zh. vychisl. matem. i matem. fiz., 27:12 (1987), 1853–1860 | MR | Zbl
[13] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl
[14] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77
[15] Godunov S. K., Zabrodin A. V., Prokopov G. P. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl