Method for finding an approximate solution of the asphericity problem for a convex body
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1668-1678 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a convex body, the finite-dimensional problem is considered of minimizing the ratio of its circumradius to its inradius (in an arbitrary norm) by choosing a common center of the circumscribed and inscribed balls. An approach is described for obtaining an approximate solution of the problem, whose accuracy depends on the error of a preliminary polyhedral approximation of the convex body and the unit ball of the used norm. The main result consists of developing and justifying a method for finding an approximate solution with every step involving the construction of supporting hyperplanes of the convex body and the unit ball of the used norm at some marginal points and the solution of a linear programming problem.
@article{ZVMMF_2013_53_10_a6,
     author = {S. I. Dudov and E. A. Meshcheryakova},
     title = {Method for finding an approximate solution of the asphericity problem for~a~convex body},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1668--1678},
     year = {2013},
     volume = {53},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a6/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - E. A. Meshcheryakova
TI  - Method for finding an approximate solution of the asphericity problem for a convex body
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1668
EP  - 1678
VL  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a6/
LA  - ru
ID  - ZVMMF_2013_53_10_a6
ER  - 
%0 Journal Article
%A S. I. Dudov
%A E. A. Meshcheryakova
%T Method for finding an approximate solution of the asphericity problem for a convex body
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1668-1678
%V 53
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a6/
%G ru
%F ZVMMF_2013_53_10_a6
S. I. Dudov; E. A. Meshcheryakova. Method for finding an approximate solution of the asphericity problem for a convex body. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1668-1678. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a6/

[1] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[2] Tot L. F., Raspolozheniya na ploskosti i v prostranstve, Fizmatgiz, M., 1958

[3] Rokafellar R. T., Vypuklyi analiz, Nauka, M., 1973

[4] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[5] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[6] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[7] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1986 | MR

[8] Vasilev F. P., Metody optimizatsii, MTsNMO, M., 2011

[9] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[10] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[11] Ivanov G. E., Slabo vypuklye mnozhestva i funktsii, Fizmatlit, M., 2006

[12] Makeev V. V., “Skol kruglaya ten suschestvuet u vypuklogo tela”, Zap. nauchn. sem. POMI, 329, 2005, 67–78 | MR | Zbl

[13] Kamenev G. G., “Skorost skhodimosti adaptivnykh metodov poliedralnoi approksimatsii vypuklykh tel na nachalnom etape”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 763–778 | MR | Zbl

[14] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovr. matematika. Fundam. napravleniya, 22 (2007), 5–37 | MR

[15] D'Ocagne M., “Sur certaine figures minimales”, Bull. Soc. Math. France, 12 (1884), 168–177 | MR

[16] Lebesque H., “Sur quelques questions de minimum, relatives and courbesorbiformes, et sur leurs rapports avec le calcul des variations”, J. Math., 4:8 (1921), 67–96

[17] Vincze St., “Über den Minimalkreisring einer Eilinie”, Acta Sci. Math. (Szeged), 11:3 (1947), 133–138 | MR | Zbl

[18] Vincze I., “Über Kreisringe, die eine Eilinie einschlissen”, Studia Sci. Math. Hungar., 9:1/2 (1974), 155–159 | MR

[19] Kriticos N., “Über convexe Flachen und einschlissende Kugeln”, Math. Ann., 96 (1927), 583–583 | DOI | MR

[20] Barany I., “On the minimal ring containing the boundary of convex body”, Acta Sci. Math. (Szeged), 52:1/2 (1988), 93–100 | MR | Zbl

[21] Zucco A., “Minimal shell of a typical convex body”, Proc. Amer. Math. Soc., 109:3 (1990), 797–802 | DOI | MR | Zbl

[22] Nikolskii M. S., Silin D. B., “Nailuchshee priblizhenie vypuklogo kompakta elementami”, Tr. MIRAN, 211, 1995, 338–354 | MR

[23] Dudov S. I., “Ob otsenke granitsy vypuklogo kompakta sharovym sloem”, Izv. Sarat. un-ta, 1:2 (2001), 64–75

[24] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | DOI | MR | Zbl

[25] Dudov S. I., Zlatorunskaya I. V., “Best approximation of a compact set by a ball in an arbitrary norm”, Adv. Math. Res., 2 (2003), 81–114 | MR | Zbl

[26] Dudov S. I., Zlatorunskaya I. V., “O priblizhennoi ravnomernoi otsenke vypuklogo kompakta sharom proizvolnoi normy”, Zh. vychisl. matem. i matem. fiz., 45:3 (2005), 416–428 | MR | Zbl

[27] Dudov S. I., “Vzaimosvyaz nekotorykh zadach po otsenke vypuklogo kompakta sharom”, Matem. sb., 198:1 (2007), 43–58 | DOI | MR | Zbl

[28] Dudov S. I., “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zam., 61:4 (1997), 530–542 | DOI | MR | Zbl

[29] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1986 | MR

[30] Zukhovitskii S. I., Avdeeva L. I., Lineinoe i vypukloe programmirovanie, Nauka, M., 1964 | MR

[31] Dudov S. I., Mescheryakova E. A., “Kharakterizatsiya ustoichivosti resheniya zadachi ob asferichnosti vypuklogo tela”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:2 (2011), 20–26