On one class of dynamic transportation models
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1649-1667 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model is studied that describes the process of good transportation occurring in some technologies. Transportation regimes satisfying a given management system are examined. Such regimes are described by traveling-wave solutions to a nonlinear finite-difference analogue of a parabolic equation. Possible transportation regimes are described, and the stability of stationary regimes is analyzed.
@article{ZVMMF_2013_53_10_a5,
     author = {L. A. Beklaryan and N. K. Khachatryan},
     title = {On one class of dynamic transportation models},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1649--1667},
     year = {2013},
     volume = {53},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a5/}
}
TY  - JOUR
AU  - L. A. Beklaryan
AU  - N. K. Khachatryan
TI  - On one class of dynamic transportation models
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1649
EP  - 1667
VL  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a5/
LA  - ru
ID  - ZVMMF_2013_53_10_a5
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%A N. K. Khachatryan
%T On one class of dynamic transportation models
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1649-1667
%V 53
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a5/
%G ru
%F ZVMMF_2013_53_10_a5
L. A. Beklaryan; N. K. Khachatryan. On one class of dynamic transportation models. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1649-1667. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a5/

[1] Kantorovich L. V., Matematicheskie metody organizatsii i planirovaniya proizvodstva, Izd-vo LGU, L., 1939

[2] Kantorovich L. V., Gavurin M. K., “Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov”, Problemy povysheniya effektivnosti raboty transporta, Sb. nauchnykh statei, Izd-vo AN SSSR, M., 1949, 110–138

[3] Dantsig Dzh., Volf F., “Algoritm razlozheniya dlya zadach lineinogo programmirovaniya”, Matematika: Sb. perevodov, 8:1 (1964), 151–160

[4] Lure A. L., “Algoritm resheniya setevoi transportnoi zadachi s ogranicheniem propusknykh sposobnostei metodom uslovno-optimalnykh planov”, Materialy konferentsii po opytu i perspektivam primeneniya matematicheskikh metodov i EMM v planirovanii, Novosibirsk, 1962, 3–13

[5] Aven O. I., Lovetskii S. E., Moiseenko G. E., Optimizatsiya transportnykh potokov, Nauka, M., 1985 | MR

[6] Galaburda V. G., Sovershenstvovanie tekhnologii perevozok i uvelichenie propusknoi sposobnosti zheleznykh dorog, MIIT, M., 1983

[7] Galaburda V. G., Optimalnoe planirovanie gruzopotokov, Transport, M., 1985

[8] Kozovskii I. G., Ratsionalizatsiya perevozok gruzov na zheleznykh dorogakh, Transport, M., 1977

[9] Khachatryan N. K., Dinamicheskaya model transnatsionalnykh gruzoperevozok, Preprint, No WP/2002/145, TsEMI RAN, M.

[10] Khachatryan N. K., “O resheniyakh tipa beguschei volny v odnoi transportnoi modeli”, Avtomatika i telemekhanika, 2003, no. 3, 137–149 | MR | Zbl

[11] L. A. Beklaryan, N. K. Khachatryan, “Traveling wave type solutions in dynamic transport models”, Functional different. equations, 13:2 (2006), 125–155 | MR | Zbl

[12] Beklaryan L. A., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii. Gruppovoi podkhod, Izd-vo Faktorial, M., 2007