Numerical-analytical method for conformal mapping of polygons with six right angles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1629-1638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical-analytical method for conformal mapping of a rectangular nonagon onto the upper half-plane is proposed. Numerical results are presented.
@article{ZVMMF_2013_53_10_a3,
     author = {O. A. Grigor'ev},
     title = {Numerical-analytical method for conformal mapping of polygons with six right angles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1629--1638},
     year = {2013},
     volume = {53},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a3/}
}
TY  - JOUR
AU  - O. A. Grigor'ev
TI  - Numerical-analytical method for conformal mapping of polygons with six right angles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1629
EP  - 1638
VL  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a3/
LA  - ru
ID  - ZVMMF_2013_53_10_a3
ER  - 
%0 Journal Article
%A O. A. Grigor'ev
%T Numerical-analytical method for conformal mapping of polygons with six right angles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1629-1638
%V 53
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a3/
%G ru
%F ZVMMF_2013_53_10_a3
O. A. Grigor'ev. Numerical-analytical method for conformal mapping of polygons with six right angles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1629-1638. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a3/

[1] Bogatyrev A., Hassner M., Yarmolich D., “An exact-analytical expression for the read sensor signal in magnetic data storage channes”, Contemporary Math., 528, 2010, 155–160 | DOI | MR

[2] Bogatyrev A. B., “Konformnye otobrazheniya pryamougolnykh semiugolnikov”, Matem. sb., 203:12 (2012), 35–56 | DOI | MR

[3] Deconinck B., Heil M., Bobenko A. I., van Hoeij M., Schmics M., “Computing Riemann theta functions”, Math. Comput., 73 (2004), 1417–1442 | MR | Zbl

[4] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[5] Farkas H. M., Kra I., Riemann surfaces, Springer, Berlin, 1980 | MR | Zbl

[6] Mamford D., Lektsii o teta-funktsiyakh, per. s angl., Mir, M., 1988 | MR

[7] Ortega Dzh., Rainboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, per. s angl., Mir, M., 1975 | MR

[8] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, v 2 tomakh, per. s angl., Mir, M., 1982 | MR

[9] Bertola M., Riemann surfaces and theta functions, Concordia University Press, Quebec, 2006