Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1622-1628
Voir la notice de l'article provenant de la source Math-Net.Ru
The Fourier–Bessel integral transform $$ g(x)=F[f](x)=\frac1{2^p\Gamma(p+1)}\int_0^{+\infty}t^{2p+1}f(x)j_p(xt)dt $$ is considered in the space $\mathbb{L}_2(\mathbb{R}_+)$. Here, $j_p(u)=((2^p\Gamma(p+1))/(u^p))J_p(u)$ and $J_p(u)$ is a Bessel function of the first kind. New estimates are proved for the integral $$ \delta^2_N(f)=\int_N^{+\infty}x^{2p+1}g^2(x)dx,\quad N>0, $$ in $\mathbb{L}_2(\mathbb{R}_+)$ for some classes of functions characterized by a generalized modulus of continuity.
@article{ZVMMF_2013_53_10_a2,
author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
title = {Some new estimates of the {Fourier{\textendash}Bessel} transform in the space $\mathbb{L}_2(\mathbb{R}_+)$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1622--1628},
publisher = {mathdoc},
volume = {53},
number = {10},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a2/}
}
TY - JOUR
AU - V. A. Abilov
AU - F. V. Abilova
AU - M. K. Kerimov
TI - Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2013
SP - 1622
EP - 1628
VL - 53
IS - 10
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a2/
LA - ru
ID - ZVMMF_2013_53_10_a2
ER -
%0 Journal Article
%A V. A. Abilov
%A F. V. Abilova
%A M. K. Kerimov
%T Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1622-1628
%V 53
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a2/
%G ru
%F ZVMMF_2013_53_10_a2
V. A. Abilov; F. V. Abilova; M. K. Kerimov. Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1622-1628. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a2/