@article{ZVMMF_2013_53_10_a13,
author = {A. D. Savel'ev},
title = {The use of high-order composite compact schemes for computing supersonic jet interaction with a surface},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1746--1759},
year = {2013},
volume = {53},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a13/}
}
TY - JOUR AU - A. D. Savel'ev TI - The use of high-order composite compact schemes for computing supersonic jet interaction with a surface JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2013 SP - 1746 EP - 1759 VL - 53 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a13/ LA - ru ID - ZVMMF_2013_53_10_a13 ER -
%0 Journal Article %A A. D. Savel'ev %T The use of high-order composite compact schemes for computing supersonic jet interaction with a surface %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2013 %P 1746-1759 %V 53 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a13/ %G ru %F ZVMMF_2013_53_10_a13
A. D. Savel'ev. The use of high-order composite compact schemes for computing supersonic jet interaction with a surface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1746-1759. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a13/
[1] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. AN, 366:3 (1999), 319–322 | MR | Zbl
[2] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR
[3] Visbal M. R., Gaitonde D. V., “On the use of high-order finite-difference schemes on curvilinear and deforming meshes”, J. Comput. Phys., 181 (2002), 155–185 | DOI | MR | Zbl
[4] Bogey C., Bailly C., “A family of low dispersive and low dissipative explicit schemes for noise computations”, J. Comput. Phys., 194 (2004), 194–214 | DOI | Zbl
[5] Lele S., Lele S. K., Moin P., “Direct numerical simulation of isotropic turbulence interacting with a shock wave”, J. Fluid Mech., 251 (1993), 533–562 | DOI
[6] Bogey C., d'Cacqueray N., Bailly C., “A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations”, J. Comput. Phys., 228 (2009), 1447–1465 | DOI | MR | Zbl
[7] Savelev A. D., “O strukture vnutrennei dissipatsii sostavnykh kompaktnykh skhem dlya resheniya zadach vychislitelnoi gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2232–2246 | MR
[8] Mikhailovskaya M. N., Rogov B. V., “Monotonnye kompaktnye skhemy beguschego scheta dlya sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 672–695 | MR
[9] Tolstykh A. I., “O gibridnykh skhemakh s multioperatorami vysokogo poryadka dlya scheta razryvnykh reshenii”, Zh. vychisl. matem. i matem. fiz., 53:9 (2013), 1481–1502 | DOI
[10] Bradshow P., Edna M. L., The normal impingement of a circular air jet on a flat surface, Reports and Memoranda No 3205, Aerodynamical Division, N.P.L., September, 1959
[11] Donaldson C. D., Snedeker R. S., “A study of free jet impingement. 1: Mean properties of free and impinging jets”, J. Fluid Mech., 45 (1971), 281–319 | DOI
[12] Ginzberg I. P., Semilentenko B. G., Terpigorev V. S., Uskov V. N., “Some singularities of supersonic underexpanded jet interaction with a plane obstacle”, J. Eng. Phys., 19 (1973), 1081–1084 | DOI
[13] Lamont P. J., Hunt B. L., “The impingement of underexpanded axisymmetric jets on perpendicular and inclined flat plates”, J. Fluid Mech., 100 (1980), 471–511 | DOI
[14] Krothapalli A., “Discrete tones generated by an impinging underexpanded rectangular jet”, AIAA J., 23 (1985), 1910–1915 | DOI
[15] Kuo C., Dowling A. P., “Oscillations of a moderately underexpanded choked jet impinging upon a flat plates”, J. Fluid Mech., 315 (1996), 267–291 | DOI | Zbl
[16] Krothapalli A., Rajakuperan E., Alvi F. S., Lourenco L., “Flow field and noise characteristics of supersonic impinging jet”, J. Fluid Mech., 392 (1999), 155–181 | DOI | Zbl
[17] Henderson B., Bridges J., Wernet M., “An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets”, J. Fluid Mech., 542 (2005), 115–137 | DOI | Zbl
[18] Dubinskaya N. V., Ivanov M. Ya., “K raschetu vzaimodeistviya sverkhzvukovoi strui idealnogo gaza s ploskoi pregradoi, perpendikulyarnoi ee osi”, Uch. zap. TsAGI, 6:5 (1975), 38–44
[19] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl
[20] Sakakibara Y., Iwamoto J., “Numerical study of oscillation mechanism in underexpanded jet impinging on plate”, J. Fluids Eng., 120 (1998), 477 | DOI
[21] Gribben B. J., Badcock K. J., Richards B. E., “Numerical study of shock-reflection hysteresis in an underexpanded jet”, AIAA J., 38 (2000), 275–283 | DOI
[22] Kim S. I., Park S. O., “Numerical analysis of the oscillatory behaviors of supersonic impinging jet flow”, 24th Int. Cong. Aeron. Sci. (2004)
[23] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987 | MR
[24] Menter F. R., Zonal two equation $k-\omega$ turbulence models for aerodynamic flows, AIAA Paper 93-2906, 1993
[25] Savelev A. D., “Prakticheskoe sravnenie dvukh turbulentnykh modelei”, Matem. modelir., 21:9 (2009), 108–120
[26] Steger Zh. L., “Neyavnyi konechno-raznostnyi metod dlya rascheta dvumernogo techeniya okolo tel proizvolnoi formy”, Raketnaya tekhnika i kosmonavtika, 16:7 (1978), 51–60
[27] Savelev A. D., “Sostavnye kompaktnye skhemy vysokogo poryadka dlya modelirovaniya techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1387–1401 | MR
[28] Savelev A. D., “Primenenie raznostnykh operatorov vysokogo poryadka pri chislennom modelirovanii zadach aerodinamiki”, Matem. modelirovanie, 24:4 (2012), 80–94 | MR
[29] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR