Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1739-1745

Voir la notice de l'article provenant de la source Math-Net.Ru

For the pressure-driven flow in an annular channel, its linear instability with respect to axisymmetric perturbations at high Reynolds numbers is investigated within the framework of the triple-deck theory. It is shown that the problem is reduced to that of the two-dimensional linear instability of the Poiseuille flow in a plane channel. The ratio of the inner to outer radii of the channel is found at which the instability is minimal.
@article{ZVMMF_2013_53_10_a12,
     author = {I. V. Savenkov},
     title = {Axisymmetric instability of pressure-driven flow in an annular channel at high {Reynolds} numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1739--1745},
     publisher = {mathdoc},
     volume = {53},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/}
}
TY  - JOUR
AU  - I. V. Savenkov
TI  - Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1739
EP  - 1745
VL  - 53
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/
LA  - ru
ID  - ZVMMF_2013_53_10_a12
ER  - 
%0 Journal Article
%A I. V. Savenkov
%T Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1739-1745
%V 53
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/
%G ru
%F ZVMMF_2013_53_10_a12
I. V. Savenkov. Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1739-1745. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/