Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1739-1745 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the pressure-driven flow in an annular channel, its linear instability with respect to axisymmetric perturbations at high Reynolds numbers is investigated within the framework of the triple-deck theory. It is shown that the problem is reduced to that of the two-dimensional linear instability of the Poiseuille flow in a plane channel. The ratio of the inner to outer radii of the channel is found at which the instability is minimal.
@article{ZVMMF_2013_53_10_a12,
     author = {I. V. Savenkov},
     title = {Axisymmetric instability of pressure-driven flow in an annular channel at high {Reynolds} numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1739--1745},
     year = {2013},
     volume = {53},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/}
}
TY  - JOUR
AU  - I. V. Savenkov
TI  - Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1739
EP  - 1745
VL  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/
LA  - ru
ID  - ZVMMF_2013_53_10_a12
ER  - 
%0 Journal Article
%A I. V. Savenkov
%T Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1739-1745
%V 53
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/
%G ru
%F ZVMMF_2013_53_10_a12
I. V. Savenkov. Axisymmetric instability of pressure-driven flow in an annular channel at high Reynolds numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1739-1745. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a12/

[1] Mott J. E., Joseph D. D., “Stability of parallel ow between concentric cylinders”, Phys. Fluids, 11:10 (1968), 2065–2073 | DOI | Zbl

[2] Walton A. G., “Stability of circular Poiseuille–Couette ow to axisymmetric disturbances”, J. Fluid Mech., 500 (2004), 169–210 | DOI | MR | Zbl

[3] Neiland V. Ya., “K teorii otryva laminarnogo pogranichnogo sloya v sverkhzvukovom potoke”, Izv. AN SSSR. Ser. mekhan. zhidkosti i gaza, 1969, no. 4, 53–58

[4] Stewartson K., Williams P. G., “Self-induced separation”, Proc. Roy. Soc. A, 312:1509 (1969), 181–206 | DOI | Zbl

[5] Messiter A. F., “Boundary-layer flow near the trailing edge of a flat plate”, SIAM J. Appl. Math., 18:1 (1970), 241–257 | DOI | Zbl

[6] Zhuk V. I., Ryzhov O. S., “O svobodnom vzaimodeistvii pristenochnykh sloev s yadrom techeniya Puazeilya”, Dokl. AN SSSR, 257:1 (1981), 55–59 | MR | Zbl

[7] Bogdanova E. V., Ryzhov O. S., “O kolebaniyakh, vozbuzhdaemykh garmonicheskim ostsillyatorom v techenii Puazeilya”, Dokl. AN SSSR, 257:4 (1981), 837–841 | Zbl

[8] Savenkov I. V., “Osobennosti lineinoi stadii razvitiya trekhmernykh volnovykh paketov v ploskom techenii Puazeilya”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1271–1279 | MR | Zbl

[9] Smith F. T., “On the high Reynolds number theory of laminar flows”, IMA J. Appl. Math., 28:3 (1982), 207–281 | DOI | MR | Zbl

[10] Ryzhov O. S., Terentev E. D., “O perekhodnom rezhime, kharakterizuyuschem zapusk vibratora v dozvukovom pogranichnom sloe na plastinke”, Prikl. matem. i mekhan., 50:6 (1986), 974–986 | Zbl