Application of moment equations to the mathematical simulation of gas microflows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1721-1738 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach to the simulation of moderately rarefied gas flows in a transition zone is developed. The applicability of the regularized Grad 13-moment (R13) equations to the numerical simulation of a transition flow between the continual and free-molecular gas flow regimes is explored. For the R13 equations, a numerical method is proposed that is a higher order accurate version of Godunov’s explicit method. A numerical procedure for implementing solid-wall boundary conditions is developed. One- and two-dimensional test problems are solved, including the shock wave structure and the Poiseuille flow in a plane channel. The possibility of applying the R13 equations to the simulation of plane channel and jet flows in a transition regime is explored. To this end, the flow in a square cavity generated by the motion of one of the walls is studied and the operation of the Knudsen pump is analyzed.
@article{ZVMMF_2013_53_10_a11,
     author = {I. E. Ivanov and I. A. Kryukov and M. Yu. Timokhin},
     title = {Application of moment equations to the mathematical simulation of gas microflows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1721--1738},
     year = {2013},
     volume = {53},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a11/}
}
TY  - JOUR
AU  - I. E. Ivanov
AU  - I. A. Kryukov
AU  - M. Yu. Timokhin
TI  - Application of moment equations to the mathematical simulation of gas microflows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1721
EP  - 1738
VL  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a11/
LA  - ru
ID  - ZVMMF_2013_53_10_a11
ER  - 
%0 Journal Article
%A I. E. Ivanov
%A I. A. Kryukov
%A M. Yu. Timokhin
%T Application of moment equations to the mathematical simulation of gas microflows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1721-1738
%V 53
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a11/
%G ru
%F ZVMMF_2013_53_10_a11
I. E. Ivanov; I. A. Kryukov; M. Yu. Timokhin. Application of moment equations to the mathematical simulation of gas microflows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1721-1738. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a11/

[1] Karniadakis G., Beskok A., Aluru N., Microflows and nanoflows fundamentals and simulation, Springer, New York, 2005 | MR | Zbl

[2] Sercignani S., The Boltzmann equation and its application, Springer-Verlag, New York, 1988 | MR

[3] Aristov V. V., Cheremisin F. G., “Konservativnyi metod rasschepleniya dlya resheniya uravnenii Boltsmana”, Zh. vychisl. matem. i matem. fiz., 20:1 (1980), 191–207 | MR | Zbl

[4] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. AN, 357:1 (1997), 53–56 | MR

[5] Bhatnagar P. L., Gross E. P., Krook M. A., “A Model for Collision Processes in Gases”, Phys. Rev., 94 (1954), 511–525 | DOI | Zbl

[6] Shakhov E. M., “Generalization of the Krook kinetic equation”, Fluid Dynamics, 3 (1968), 142–145

[7] Larina I. N., Rykov V. A., “Raschet ploskikh techenii razrezhennogo gaza pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 36:12 (1996), 135–150 | MR | Zbl

[8] Titarev V. A., “Chislennyi metod rascheta dvukhmernykh nestatsionarnykh techenii razrezhennogo gaza v oblastyakh proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 49:7 (2009), 1255–1270 | MR | Zbl

[9] Elizarova T. G., Shirokov I. A., Montero S., “Numerical simulation of Shock-wave structure for argon and helium”, Phys. Fluids, 17 (2005) | DOI

[10] Bird G. A., Molecular gas dynamics and the direct simulation of gas flows, Oxford University Press, Oxford, 1994 | MR

[11] Ivanov M. S. et al., “SMILE System for 2D/3D DSMC computations”, Proc. of 25th Int. Symp. on RGD, eds. M. S. Ivanov, A. K. Rebrov, Publishing House of the SB RAS, Novosibirsk, 2007, 539–544

[12] Grad H., “On the kinetic theory of rarefied gases”, Comm. Pure Appl. Math., 2 (1949), 331–407 | DOI | MR | Zbl

[13] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[14] Struchtrup H., Torrilhon M., “Regularization of grad's 13-moment equations: Derivation and linear analysis”, Phys. Fluids, 15 (2003), 2668–2680 | DOI | MR

[15] Xu K., Huang J. C., “A unified gas-kinetic scheme for continuum and rarefied flows”, J. Comput. Phys., 229 (2010), 7747–7764 | DOI | MR | Zbl

[16] Liao W., Peng Y., Luo L.-S., Xu K., “Modified gas-kinetic scheme for shock structures in argon”, Progress in Comp. Fluid Dynamics, 8:1–4 (2008), 97–108 | DOI | Zbl

[17] Tang G. H., Zhang Y. H., Emerson D. R., “Lattice Boltzmann models for nonequilibrium Gas Flows”, Phys. Rev. E, 77 (2008), 046701 | DOI

[18] Perumal D. A., Krishna V., Sarvesh G., Dass A., “Numerical simulation of gaseous microflows by Lattice Boltzmann Method”, Internat. J. Rec. Trends in Engng., 1:5 (2009), 15–20

[19] Chen S., Doolen G. D., “Lattice Boltzmann method for fluid flows”, Annu. Rev. Fluid Mech., 1998, 329–364 | DOI | MR

[20] Holway L. H., “Existence of kinetic theory solutions to the shock structure problem”, Phys. Fluids, 7:6 (1964), 911–913 | DOI | Zbl

[21] Grad H., “The profile of a steady plane shock wave”, Comm. on Pure Appl. Math., 5:3 (1952), 257–300 | DOI | MR | Zbl

[22] Torrilhon M., Struchtrup H., “Regularized 13-moment equations: shock structure calculations and comparison to Burnett models”, J. Fluid Mech., 513 (2004), 171–198 | DOI | MR | Zbl

[23] Mizzi S., Extended macroscopic models for rarefied gas dynamics in micro-sized domains, PhD Thesis, University of Strathclyde, 2008

[24] Gu X. J., Emerson D. R., “A High-order moment approach for capturing non-equilibrium phenomena in the transition Regime”, J. Fluid Mech., 636 (2009), 177–216 | DOI | MR | Zbl

[25] Gu X. J., Emerson D. R., “A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions”, J. Comput. Phys., 225 (2007), 263–283 | DOI | Zbl

[26] Struchtrup H., Macroscopic transport equations for rarefied gas flows, Springer, New-York, 2005 | MR | Zbl

[27] Torrilhon M., “Two-dimensional bulk microflow simulations based on regularized grad's 13-moment equations”, Multiscale Model. Simul., 5:3 (2006), 695–728 | DOI | MR | Zbl

[28] Struchtrup H., Torrilhon M., “Boundary conditions for regularized 13-moment-equations for micro-channel-flows”, J. Comput. Phys., 227 (2008), 1982–2011 | DOI | MR | Zbl

[29] Maxwell J. C., “On stresses in rarefied gases arising from inequalities of temperature”, Phil. Trans. Roy. Soc. (London), 170 (1879), 231–256 | DOI

[30] Ivanov I. E., Kryukov I. A., “Kvazimonotonnyi metod povyshennogo poryadka tochnosti dlya rascheta vnutrennikh i struinykh techenii nevyazkogo gaza”, Matem. modelirovanie, 8:6 (1996), 47–55 | MR | Zbl

[31] Timokhin M. Yu., “Primenenie sistemy momentnykh uravnenii R13 dlya chislennogo modelirovaniya gazodinamicheskikh techenii”, Vestn. Nizhegorodskogo un-ta, 2011, no. 4, 1168–1170

[32] Harten A., Lax P. D., van Leer B., “On upstream differencing and Godunov-type schemes for Hyperbolic conservation Laws”, SIAM Rev., 25 (1983), 35–45 | DOI | MR

[33] Glushko G. S., Ivanov I. E., Kryukov I. A., “Metod rascheta turbulentnykh sverkhzvukovykh techenii”, Matem. modelirovanie, 21:12 (2009), 103–121 | MR | Zbl

[34] Ivanov I. E., Kryukov I. A., Timokhin M. Yu., Bondar Ye. A., Kokhanchik A. A., Ivanov M. S., “Study of shock wave structure by regularized grad's set of equations”, Proc. of 28th Int. Symp. on RGD (Melville, New York, 2012), eds. M. Mareschal, A. Santos, 215–222

[35] Alsmeyer H., “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid Mech., 74 (1976), 497–513 | DOI

[36] Yen S. M., “Temperature overshoot in shock waves”, Phys. Fluids, 9 (1966), 1417–1418 | DOI

[37] Erofeev A. I., Fridlender O. G., “Perenos impulsa i energii v udarnoi volne”, Izvestiya RAN. MZhG, 2002, no. 4, 120–130 | Zbl

[38] Ohwada T., Sone Yo., Aoki K., “Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basic of the Boltzmann equation for hard-sphere molecules”, Phys. Fluids A, 1 (1989), 2042–2049 | DOI | Zbl

[39] Sivukhin D. V., Termodinamika i molekulyarnaya fizika, Fizmatlit, M., 2005

[40] Han Ye. L., Alexeenko A., Young M., Muntz E. P., “Experimental and computational studies of temperature gradient driven molecular transport in gas flows through nano/micro-scale channels”, Nanoscale and Microscale Thermophys. Engng., 11 (2007), 151–175 | DOI