Numerical simulation of seismic activity by the grid-characteristic method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1709-1720 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Seismic activity in homogeneous and layered enclosing rock masses is studied. A numerical mechanical-mathematical model of a hypocenter is proposed that describes the whole range of elastic perturbations propagating from the hypocenter. Synthetic beachball plots computed for various fault plane orientations are compared with the analytical solution in the case of homogeneous rock. A detailed analysis of wave patterns and synthetic seismograms is performed to compare seismic activities in homogeneous and layered enclosing rock masses. The influence exerted by individual components of a seismic perturbation on the stability of quarry walls is analyzed. The grid-characteristic method is used on three-dimensional parallelepipedal and curvilinear structured grids with boundary conditions set on the boundaries of the integration domain and with well-defined contact conditions specified in explicit form.
@article{ZVMMF_2013_53_10_a10,
     author = {V. I. Golubev and I. B. Petrov and N. I. Khokhlov},
     title = {Numerical simulation of seismic activity by the grid-characteristic method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1709--1720},
     year = {2013},
     volume = {53},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a10/}
}
TY  - JOUR
AU  - V. I. Golubev
AU  - I. B. Petrov
AU  - N. I. Khokhlov
TI  - Numerical simulation of seismic activity by the grid-characteristic method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1709
EP  - 1720
VL  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a10/
LA  - ru
ID  - ZVMMF_2013_53_10_a10
ER  - 
%0 Journal Article
%A V. I. Golubev
%A I. B. Petrov
%A N. I. Khokhlov
%T Numerical simulation of seismic activity by the grid-characteristic method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1709-1720
%V 53
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a10/
%G ru
%F ZVMMF_2013_53_10_a10
V. I. Golubev; I. B. Petrov; N. I. Khokhlov. Numerical simulation of seismic activity by the grid-characteristic method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1709-1720. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a10/

[1] Gaskin V. V., Sobolev V. I., “Imitatsionnoe modelirovanie seismicheskikh protsessov v protyazhennykh sooruzheniyakh”, Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2005, no. 5, 26–33

[2] Mikheeva T. V., “Obzor suschestvuyuschikh programmnykh sredstv imitatsionnogo modelirovaniya pri issledovanii mekhanizmov funktsionirovaniya i upravleniya proizvodstvennymi sistemami”, Izvestiya Altaiskogo gos. un-ta, 2009, no. 1, 87–90

[3] Semchukov A. N., Chislennoe modelirovanie nestatsionarnykh techenii i kachestva vody v otkrytykh ruslakh: Reshenie pryamoi i obratnoi zadach, Diss.... k.f.-m.n., 2004

[4] Khvostova O. E., Kurkin A. A., “Matematicheskoe modelirovanie opolznevykh tsunami metodom chastits”, Vestn. BGTU, 2009, no. 4, 96–100

[5] Nazarova Z. A., “Testirovanie programm rascheta koordinat gipotsentrov zemletryasenii (DIMAS, ARC) na tochnost i ustoichivost v usloviyakh kamchatskoi seti radiotelemetricheskikh stantsii”, Problemy kompleksnogo geofizicheskogo monitoringa Dalnego Vostoka Rossii, Sb. tez. Nauchno-tekhn. konferentsii (11–18 noyabrya 2007 g., Petropavlovsk-Kamchatskii), 191–195

[6] Petrov I. B., Khokhlov N. I., “Modelirovanie seismicheskikh yavlenii setochno-kharakteristicheskim metodom”, Trudy MFTI, 3:3 (2011), 159–167

[7] Golubev V. I., Kvasov I. E., Petrov I. B., “Vozdeistvie prirodnykh katastrof na nazemnye sooruzheniya”, Matem. modelirovanie, 23:8 (2011), 46–54 | Zbl

[8] Balakina L. M., Vvedenskaya A. V., Golubeva N. V. i dr., Pole uprugikh napryazhenii Zemli i mekhanizm ochagov zemletryasenii, Nauka, M., 1972

[9] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl

[10] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[11] Magomedov K. M., Kholodov A. S., “O postroenii raznostnykh skhem dlya uravnenii giperbolicheskogo tipa na osnove kharakteristicheskikh sootnoshenii”, Zh. vychisl. matem. i matem. fiz., 9:2 (1969), 373–386 | MR | Zbl

[12] Ami Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 135:2 (1997), 260–278 | DOI | MR | Zbl

[13] Petrov I. B., Khokhlov N. I., “Sravnenie TVD limiterov dlya chislennogo resheniya uravnenii dinamiki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Matematicheskie modeli i zadachi upravleniya, Sb. nauch. trudov. Mosk. fiz.-tekh. in-t, M., 2011, 104–111

[14] Roe P. L., “Characteristic-Based Schemes for the Euler Equations”, Annual Rev. Fluid Mec., 1986, no. 18, 337–365 | DOI | MR | Zbl

[15] Van Leer B., “Towards the ultimate conservative difference scheme. III: Upstream-centered finite-difference schemes for ideal compressible flow”, J. Comp. Phys., 23 (1977), 263–275 | DOI | Zbl

[16] Kholodov A. S., Kholodov Ya. A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1560–1588 | MR

[17] Kholodov A. S., “O postroenii raznostnykh skhem povyshennogo poryadka tochnosti dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 20:6 (1980), 1601–1620 | MR | Zbl

[18] Shahzad F., Software development for fault plane solution and isoseismal map, M. Sc. Thesis Quaid-i-Azam Univ. Islamabad, 2006