@article{ZVMMF_2013_53_10_a1,
author = {B. I. Kvasov},
title = {Monotone and convex interpolation by weighted cubic splines},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1610--1621},
year = {2013},
volume = {53},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/}
}
B. I. Kvasov. Monotone and convex interpolation by weighted cubic splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1610-1621. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/
[1] Kvasov B. I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006
[2] Goodman T. N. T., “Shape preserving interpolation by curves”, Algorithms for Approximation IV, eds. J. Levesley, I. Anderson, J. Mason, University of Huddersfield, 2002, 24–35
[3] Fritsch F. N., Carlson R. E., “Monotone piecewise cubic interpolation”, SIAM J. Numer. Anal., 17 (1980), 238–246 | DOI | MR | Zbl
[4] Lamberti P., Manni C., “Shape preserving $C^2$ functional interpolation via parametric cubics”, Numer. Algorithms, 28 (2001), 229–254 | DOI | MR | Zbl
[5] Schumaker L. L., “On shape preserving quadratic spline interpolation”, SIAM J. Numer. Anal., 20:4 (1983), 854–864 | DOI | MR | Zbl
[6] Yan Z., “Piecewise cubic curve fitting algorithms”, Math. Comput., 49:179 (1987), 203–213 | MR | Zbl
[7] Cinquin Ph., Splines unidimensionnelles sous tension et bidimensionnelles paramétros: deux applications médicales, Thése, Université de Saint-Etienne, 28 octobre 1981
[8] Salkauskas K., “$C^1$ splines for interpolation of rapidly varying data”, Rocky Mountain J. Math., 14:1 (1984), 239–250 | DOI | MR | Zbl
[9] Salkauskas K., Bos L., “Weighted splines as optimal interpolants”, Rocky Mountain J. Math., 22 (1992), 705–717 | DOI | MR | Zbl
[10] Bos L., Salkauskas K., “Limits of weighted splines based on piecewise constant weight functions”, Rocky Mountain J. Math., 23 (1993), 483–493 | DOI | MR | Zbl
[11] Foley T. A., “Local control of interval tension using weighted spline”, Comput. Aided Geom. Des., 3 (1986), 281–294 | DOI | MR | Zbl
[12] Foley T. A., “Interpolation with interval and point tension control using cubic weighted splines”, ACM TOMS, 13 (1987), 68–96 | DOI | MR | Zbl
[13] Foley T. A., “A shape preserving interpolant with tension controls”, Comput. Aided Geom. Des., 5 (1988), 105–118 | DOI | MR | Zbl
[14] Kim Tae-wan, Kvasov B. I., “A shape-preserving approximation by weighted cubic splines”, J. Comput. Appl. Math., 236 (2012), 4383–4397 | DOI | MR | Zbl
[15] Miroshnichenko V. L., “Izogeometricheskie svoistva i otsenki oshibki approksimatsii vesovymi kubicheskimi splainami”, Splainy i ikh prilozheniya, Vychislitelnye sistemy, 154, Novosibirsk, 1995, 127–154 | MR
[16] Miroshnichenko V. L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh splainov klassa”, Priblizhenie splainami, Vychislitelnye sistemy, 137, Novosibirsk, 1990, 31–57 | MR
[17] Farin G., Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, 2002 | Zbl
[18] Peña J. M. (Ed.), Shape Preserving Representations in Computer-Aided Geometric Design, Nova Science Publishers, New York, 1999 | Zbl
[19] Costantini P., “On monotone and convex spline interpolation”, Math. Comp., 46 (1986), 203–214 | DOI | MR | Zbl
[20] Schmidt J. W., Hess W., “Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation”, Elem. Math., 39 (1984), 85–96 | MR
[21] Akima H., “A new method of interpolation and smooth curve fitting based on local procedures”, J. Assoc. Comput. Mach., 17 (1970), 589–602 | DOI | Zbl
[22] Späth H., One Dimensional Spline Interpolation Algorithms, A. K. Peters, Massachusetts, 1995 | MR
[23] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR
[24] Han X., “Convexity-preserving piecewise rational quartic interpolation”, SIAM J. Numer. Anal., 46:2 (2008), 920–929 | DOI | MR | Zbl