Monotone and convex interpolation by weighted cubic splines
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1610-1621

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms for interpolating by weighted cubic splines are constructed with the aim of preserving the monotonicity and convexity of the original discrete data. The analysis performed in this paper makes it possible to develop two algorithms with the automatic choice of the shape-controlling parameters (weights). One of them preserves the monotonicity of the data, while the other preserves the convexity. Certain numerical results are presented.
@article{ZVMMF_2013_53_10_a1,
     author = {B. I. Kvasov},
     title = {Monotone and convex interpolation by weighted cubic splines},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1610--1621},
     publisher = {mathdoc},
     volume = {53},
     number = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/}
}
TY  - JOUR
AU  - B. I. Kvasov
TI  - Monotone and convex interpolation by weighted cubic splines
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1610
EP  - 1621
VL  - 53
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/
LA  - ru
ID  - ZVMMF_2013_53_10_a1
ER  - 
%0 Journal Article
%A B. I. Kvasov
%T Monotone and convex interpolation by weighted cubic splines
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1610-1621
%V 53
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/
%G ru
%F ZVMMF_2013_53_10_a1
B. I. Kvasov. Monotone and convex interpolation by weighted cubic splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1610-1621. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/