Monotone and convex interpolation by weighted cubic splines
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1610-1621 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algorithms for interpolating by weighted cubic splines are constructed with the aim of preserving the monotonicity and convexity of the original discrete data. The analysis performed in this paper makes it possible to develop two algorithms with the automatic choice of the shape-controlling parameters (weights). One of them preserves the monotonicity of the data, while the other preserves the convexity. Certain numerical results are presented.
@article{ZVMMF_2013_53_10_a1,
     author = {B. I. Kvasov},
     title = {Monotone and convex interpolation by weighted cubic splines},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1610--1621},
     year = {2013},
     volume = {53},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/}
}
TY  - JOUR
AU  - B. I. Kvasov
TI  - Monotone and convex interpolation by weighted cubic splines
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2013
SP  - 1610
EP  - 1621
VL  - 53
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/
LA  - ru
ID  - ZVMMF_2013_53_10_a1
ER  - 
%0 Journal Article
%A B. I. Kvasov
%T Monotone and convex interpolation by weighted cubic splines
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2013
%P 1610-1621
%V 53
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/
%G ru
%F ZVMMF_2013_53_10_a1
B. I. Kvasov. Monotone and convex interpolation by weighted cubic splines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 53 (2013) no. 10, pp. 1610-1621. http://geodesic.mathdoc.fr/item/ZVMMF_2013_53_10_a1/

[1] Kvasov B. I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006

[2] Goodman T. N. T., “Shape preserving interpolation by curves”, Algorithms for Approximation IV, eds. J. Levesley, I. Anderson, J. Mason, University of Huddersfield, 2002, 24–35

[3] Fritsch F. N., Carlson R. E., “Monotone piecewise cubic interpolation”, SIAM J. Numer. Anal., 17 (1980), 238–246 | DOI | MR | Zbl

[4] Lamberti P., Manni C., “Shape preserving $C^2$ functional interpolation via parametric cubics”, Numer. Algorithms, 28 (2001), 229–254 | DOI | MR | Zbl

[5] Schumaker L. L., “On shape preserving quadratic spline interpolation”, SIAM J. Numer. Anal., 20:4 (1983), 854–864 | DOI | MR | Zbl

[6] Yan Z., “Piecewise cubic curve fitting algorithms”, Math. Comput., 49:179 (1987), 203–213 | MR | Zbl

[7] Cinquin Ph., Splines unidimensionnelles sous tension et bidimensionnelles paramétros: deux applications médicales, Thése, Université de Saint-Etienne, 28 octobre 1981

[8] Salkauskas K., “$C^1$ splines for interpolation of rapidly varying data”, Rocky Mountain J. Math., 14:1 (1984), 239–250 | DOI | MR | Zbl

[9] Salkauskas K., Bos L., “Weighted splines as optimal interpolants”, Rocky Mountain J. Math., 22 (1992), 705–717 | DOI | MR | Zbl

[10] Bos L., Salkauskas K., “Limits of weighted splines based on piecewise constant weight functions”, Rocky Mountain J. Math., 23 (1993), 483–493 | DOI | MR | Zbl

[11] Foley T. A., “Local control of interval tension using weighted spline”, Comput. Aided Geom. Des., 3 (1986), 281–294 | DOI | MR | Zbl

[12] Foley T. A., “Interpolation with interval and point tension control using cubic weighted splines”, ACM TOMS, 13 (1987), 68–96 | DOI | MR | Zbl

[13] Foley T. A., “A shape preserving interpolant with tension controls”, Comput. Aided Geom. Des., 5 (1988), 105–118 | DOI | MR | Zbl

[14] Kim Tae-wan, Kvasov B. I., “A shape-preserving approximation by weighted cubic splines”, J. Comput. Appl. Math., 236 (2012), 4383–4397 | DOI | MR | Zbl

[15] Miroshnichenko V. L., “Izogeometricheskie svoistva i otsenki oshibki approksimatsii vesovymi kubicheskimi splainami”, Splainy i ikh prilozheniya, Vychislitelnye sistemy, 154, Novosibirsk, 1995, 127–154 | MR

[16] Miroshnichenko V. L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh splainov klassa”, Priblizhenie splainami, Vychislitelnye sistemy, 137, Novosibirsk, 1990, 31–57 | MR

[17] Farin G., Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, 2002 | Zbl

[18] Peña J. M. (Ed.), Shape Preserving Representations in Computer-Aided Geometric Design, Nova Science Publishers, New York, 1999 | Zbl

[19] Costantini P., “On monotone and convex spline interpolation”, Math. Comp., 46 (1986), 203–214 | DOI | MR | Zbl

[20] Schmidt J. W., Hess W., “Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation”, Elem. Math., 39 (1984), 85–96 | MR

[21] Akima H., “A new method of interpolation and smooth curve fitting based on local procedures”, J. Assoc. Comput. Mach., 17 (1970), 589–602 | DOI | Zbl

[22] Späth H., One Dimensional Spline Interpolation Algorithms, A. K. Peters, Massachusetts, 1995 | MR

[23] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[24] Han X., “Convexity-preserving piecewise rational quartic interpolation”, SIAM J. Numer. Anal., 46:2 (2008), 920–929 | DOI | MR | Zbl