Boundary observability of elastic vibrations in a system of sequentially connected strings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1614-1620 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The observability problem for the elastic vibrations of a system consisting of sequentially connected objects with distributed parameters is solved. An object with lumped parameters is connected to the system. The initial state of the system is recovered from observations on its boundary and at the connection point of the objects with distributed and lumped parameters.
@article{ZVMMF_2012_52_9_a3,
     author = {A. I. Egorov and L. N. Znamenskaya},
     title = {Boundary observability of elastic vibrations in a~system of sequentially connected strings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1614--1620},
     year = {2012},
     volume = {52},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a3/}
}
TY  - JOUR
AU  - A. I. Egorov
AU  - L. N. Znamenskaya
TI  - Boundary observability of elastic vibrations in a system of sequentially connected strings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1614
EP  - 1620
VL  - 52
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a3/
LA  - ru
ID  - ZVMMF_2012_52_9_a3
ER  - 
%0 Journal Article
%A A. I. Egorov
%A L. N. Znamenskaya
%T Boundary observability of elastic vibrations in a system of sequentially connected strings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1614-1620
%V 52
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a3/
%G ru
%F ZVMMF_2012_52_9_a3
A. I. Egorov; L. N. Znamenskaya. Boundary observability of elastic vibrations in a system of sequentially connected strings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1614-1620. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a3/

[1] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti kolebanii seti iz svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 815–825 | MR | Zbl

[2] Egorov A. I., Znamenskaya L. N., “Nablyudaemost uprugikh kolebanii seti s raspredelennymi i sosredotochennymi parametrami po svobodnym granitsam”, Tr. IMiM UrO RAN, 16, no. 5, 2010, 76–81

[3] Egorov A. I., Znamenskaya L. N., “Nablyudaemost kolebanii seti iz svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami v tochke soedineniya”, Vestn. SPb un-ta. Ser. 10, 2011, no. 1, 143–147

[4] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti uprugikh kolebanii posledovatelno soedinennykh ob'ektov s raspredelennymi parametrami”, Tr. IMiM UrO RAN, 17, no. 1, 2011, 85–92