@article{ZVMMF_2012_52_9_a12,
author = {K. N. Volkov},
title = {Finite-volume discretization of the {Euler} equations on unstructured deformable lattices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1707--1723},
year = {2012},
volume = {52},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a12/}
}
TY - JOUR AU - K. N. Volkov TI - Finite-volume discretization of the Euler equations on unstructured deformable lattices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1707 EP - 1723 VL - 52 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a12/ LA - ru ID - ZVMMF_2012_52_9_a12 ER -
%0 Journal Article %A K. N. Volkov %T Finite-volume discretization of the Euler equations on unstructured deformable lattices %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1707-1723 %V 52 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a12/ %G ru %F ZVMMF_2012_52_9_a12
K. N. Volkov. Finite-volume discretization of the Euler equations on unstructured deformable lattices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 9, pp. 1707-1723. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_9_a12/
[1] Haber R., Shephard M. S., Abel J. F., et al., “A general two-dimensional graphical finite-element preprocessor utilizing discrete transfinite mappings”, Intern. J. Numer. Meth. Engng., 17:7 (1981), 1015–1044 | DOI | Zbl
[2] Gadala M. S., Movahhedy M. R., Wang J., “On the mesh motion for ALE modeling of metal forming processes”, Finite Elements in Analys. and Design, 38:5 (2002), 435–459 | DOI | Zbl
[3] Batina J. T., “Unsteady Euler airfoil solutions using unstructured dynamic meshes”, AIAA Journal, 28:8 (1990), 1381–1288 | DOI
[4] Venkatakrishnan V., Mavriplis D. J., “Implicit method for the computation of unsteady flows on unstructured grids”, J. Comput. Phys., 127:2 (1996), 380–397 | DOI | Zbl
[5] Bottasso C. L., Detomi D., Serra R., “The ball-vertex method: a new simple analogy method for unstructured dynamic meshes”, Comput. Meth. Appl. Mech. and Engng., 194:39–41 (2005), 4244–4264 | DOI | MR | Zbl
[6] Yan S., Ma Q. W., “Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method”, J. Comput. Phys., 221:1 (2007), 666–692 | DOI | MR | Zbl
[7] Farhat C., Degand C., Koobus B., Lesoinne M., “Torsional spring for two-dimensional dynamic unstructured fluid meshes”, Comput. Meth. Appl. Mech. and Engng., 163:1–4 (1998), 231–245 | DOI | Zbl
[8] Murayama M., Nakahashi K., Matsushima K., Unstructured dynamic mesh for large movement and deformation, AIAA Paper No 2002–0122, 2002
[9] Degand C., Farhat C., “A three-dimensional torsional spring analogy method for unstructured dynamic meshes”, Comput. and Struct., 80:3–4 (2002), 305–316 | DOI
[10] Blom F. J., “Considerations on the spring analogy”, Internat. J. Numer. Meth. Engng., 32:6 (2000), 647–668 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[11] Zeng D., Ethier C. R., “A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains”, Finite Elements in Analys. and Design, 41:11–12 (2005), 1118–1139 | DOI
[12] Markou G. A., Mouroutis Z. S., Charmpis D. C., Papadrakakis M., “The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems”, Comput. Meth. Appl. Mech. and Engng., 196:4–6 (2007), 747–765 | DOI | MR | Zbl
[13] Johnson A. A., Tezduyar T. E., “Simulation of multiple spheres falling in a liquid-filled tube”, Comput. Meth. Appl. Mech. and Engng., 134:3–4 (1996), 351–373 | DOI | MR | Zbl
[14] Nielsen E. J., Anderson W. K., Recent improvements in aerodynamic design optimization on unstructured meshes, AIAA Paper No 2001-0596, 2001
[15] Thomas P. D., Lombard C. K., “Geometric conservation law and its application to flow computations on moving grids”, AIAA Journal, 17:10 (1979), 1030–1037 | DOI | MR | Zbl
[16] Yang Z., Unstructured dynamic meshes with higher-order time itegration schemes for the unsteady Navier–Stokes equations, AIAA Paper No 2005-1222, 2005
[17] Lesoinne M., Farhat C., “Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations”, Comput. Meth. Appl. Mech. and Engng., 134:1–2 (1996), 71–90 | DOI | Zbl
[18] Koobus B., Farhat C., “Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes”, Comput. Meth. Appl. Mech. and Engng., 170:1–2 (1999), 103–129 | DOI | MR | Zbl
[19] Jothiprasad G., Mavriplis D. J., Caughey D. A., “Higher-order time integration schemes for the unsteady Navier–Stokes equations on unstructured meshes”, J. Comput. Phys., 191:2 (2003), 542–566 | DOI | Zbl
[20] Volkov K. N., “Konechno-ob'emnaya diskretizatsiya uravnenii Nave–Stoksa na nestrukturirovannoi setke pri pomoschi raznostnykh skhem povyshennoi razreshayuschei sposobnosti”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1250–1273 | MR
[21] Guillard H., Farhat C., “On the significance of the geometric conservation law for flow computations on moving meshes”, Comput. Meth. Appl. Mech. and Engng., 190:11–12 (2000), 1467–1482 | DOI | MR | Zbl
[22] Gordnier R. E., Melville R. B., “Transonic flutter simulations using an implicit aeroelastic solver”, AIAA J. Aircraft, 37:5 (2000), 872–879 | DOI
[23] Mavriplis D. J., Yang Z., “Construction of the discrete geometric conservation law for high-order time-accurate simulations on dynamic meshes”, J. Comput. Phys., 213:2 (2006), 557–573 | DOI | MR | Zbl
[24] Farhat C., Geuzaine P., Crandmont C., “The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids”, J. Comput. Phys., 174:2 (2001), 669–694 | DOI | MR | Zbl
[25] Fransson T. H., Verdon J. M., “Standard configurations for unsteady flow through vibrating axial-flow turbomachine-cascades”, Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines and Propellers, Springer Verlag, N. Y., 1993, 859–889 | DOI
[26] Lawrence C., Spyropoulos E., Reddy T. S. R., Unsteady cascade aerodynamic response using a multiphysics simulation code, NASA Report No TM 2000-209635, 2000
[27] Verdon J. M., Caspar J. R., “A linearized unsteady aerodynamic analysis for transonic cascades”, J. Fluid Mech., 149 (1984), 403–429 | DOI | Zbl