Quasi-normal forms for parabolic systems with strong nonlinearity and weak diffusion
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1482-1491 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The local dynamics of a system of parabolic equations with strong nonlinearity involving a spatial derivative are studied. The basic critical cases when an equilibrium state becomes unstable are discussed. In all the cases, families of special evolution equations playing the role of normal forms are constructed.
@article{ZVMMF_2012_52_8_a9,
     author = {I. S. Kashchenko and S. A. Kashchenko},
     title = {Quasi-normal forms for parabolic systems with strong nonlinearity and weak diffusion},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1482--1491},
     year = {2012},
     volume = {52},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a9/}
}
TY  - JOUR
AU  - I. S. Kashchenko
AU  - S. A. Kashchenko
TI  - Quasi-normal forms for parabolic systems with strong nonlinearity and weak diffusion
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1482
EP  - 1491
VL  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a9/
LA  - ru
ID  - ZVMMF_2012_52_8_a9
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%A S. A. Kashchenko
%T Quasi-normal forms for parabolic systems with strong nonlinearity and weak diffusion
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1482-1491
%V 52
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a9/
%G ru
%F ZVMMF_2012_52_8_a9
I. S. Kashchenko; S. A. Kashchenko. Quasi-normal forms for parabolic systems with strong nonlinearity and weak diffusion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1482-1491. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a9/

[1] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1053

[2] Kashchenko S. A., “Normalization in the Systems with Small Diffusion”, Internat. J. of Bifurcation and Chaos, 6:6 (1996), 1093–1109 | DOI | MR | Zbl

[3] Kaschenko I. S., “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Dokl. AN, 435:2 (2010), 164–167 | MR

[4] Kuramoto Y., Tsuzuki T., “On the formation of dissipative structures in reaction-diffussion systems”, Progress of Theoretical Phisics, 54:3, 687–699 | DOI

[5] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR

[6] Akhromeeva T. S., Kurdyumov S. P., Malinetskii G. G. i dr., Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR | Zbl

[7] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[8] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[9] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer, Berlin, 1984 | MR | Zbl

[10] Haken H., Synergetics; an introduction, 3rd Revised and enlarged edition, Springer, Berlin, 1983 | MR

[11] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[12] Vasileva A. B., Kaschenko S. A., Kolesov Yu. S., Rozov N. X., “Bifurkatsiya avtokolebanii nelineinykh parabolicheskikh uravnenii s maloi diffuziei”, Matem. sb., 130(172):4(8) (1986), 488–499 | MR

[13] Kudryashov N. A., Metody nelineinoi matematicheskoi fiziki, Uch. posobie, Izd. Intellekt, Dolgoprudnyi, 2010

[14] Kashchenko S. A., “Bifurcational features in systems of nonlinear parabolic equations with weak diffusion”, Internat. J. Bifurcation and Chaos, 15 (2005), 11 | MR

[15] Kaschenko S. A., “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differents. ur-niya, 25:2 (1989)