@article{ZVMMF_2012_52_8_a5,
author = {S. V. Gavrilov and A. M. Denisov},
title = {Iterative method for solving a~three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1426--1436},
year = {2012},
volume = {52},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/}
}
TY - JOUR AU - S. V. Gavrilov AU - A. M. Denisov TI - Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1426 EP - 1436 VL - 52 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/ LA - ru ID - ZVMMF_2012_52_8_a5 ER -
%0 Journal Article %A S. V. Gavrilov %A A. M. Denisov %T Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1426-1436 %V 52 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/ %G ru %F ZVMMF_2012_52_8_a5
S. V. Gavrilov; A. M. Denisov. Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1426-1436. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/
[1] Borcea L., “Electrical impedance tomography”, Inverse Problems, 18 (2002), 99–136 | MR
[2] Calderon A. P., “On an inverse boundary value problem”, Seminar on Numerical Analys. and its Appl. Continuum Phys., 18, 1980, 65–73 | MR
[3] Uhlmann G., “Commentary on Calderon's paper “On an inverse boundary value problem””, Selectet papers of Alberto P. Calderon with commentary, Amer. Math. Soc., 2008, 623–636 | MR
[4] Alessandrini G., Isakov V., “Analiticity and uniqueness for the inverse conductivity problem”, Rend. Ist. Mat. Univ. Trieste, 28 (1996), 351–369 | MR | Zbl
[5] Barceo B., Fabes E., Seo J. K., “The inverse conductivity problem with one measurement: uniqueness for convex polyhedral”, Proc. Amer. Math. Soc., 122 (1994), 183–189 | MR
[6] Bellout H., Friedman A., Isakov V., “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI | MR | Zbl
[7] Astala K., Paivarinta L., “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI | MR | Zbl
[8] Kang H., Seo J. K., “Inverse conductivity problem with one measurement: uniqueness of balls in $R^3$”, SIAM J. Appl. Math., 59 (1999), 1533–1539 | DOI | MR | Zbl
[9] Kang J., Seo J. K., “Layer potential technique for the inverse conductivity problem”, Inverse Problems, 12 (1996), 267–78 | DOI | MR
[10] Bruhl M., Hanke M., “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI | MR
[11] Bruhl M., Hanke M., “Recent progress in electrical impedance tomography”, Inverse Problems, 19 (2003), 65–90 | MR
[12] Eckel H., Kress R., “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI | MR | Zbl
[13] Kwon O., Seo J. K., Yoon J. R. A., “A real-time algorithm for the location search of discontinuous conductivities with one measurement”, Communs Pure and Appl. Math., 55:1 (2002), 1–29 | DOI | MR | Zbl
[14] Kang H., Seo J. K., Shenn D., “Numerical identification of discontinuous conductivity coefficients”, Inverse Problems, 13 (1997), 113–123 | DOI | MR | Zbl
[15] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022 | MR | Zbl
[16] Gavrilov S. V., Denisov A. M., “Chislennyi metod opredeleniya granitsy neodnorodnosti v kraevoi zadache dlya uravneniya Laplasa v kusochno-odnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 51:8 (2011), 1–14 | MR