Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1426-1436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of electrical impedance tomography in a bounded three-dimensional domain with a piecewise constant electrical conductivity is considered. The boundary of the inhomogeneity is assumed to be unknown. The inverse problem is to determine the surface that is the boundary of the inhomogeneity from given measurements of the potential and its normal derivative on the outer boundary of the domain. An iterative method for solving the inverse problem is proposed, and numerical results are presented.
@article{ZVMMF_2012_52_8_a5,
     author = {S. V. Gavrilov and A. M. Denisov},
     title = {Iterative method for solving a~three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1426--1436},
     year = {2012},
     volume = {52},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/}
}
TY  - JOUR
AU  - S. V. Gavrilov
AU  - A. M. Denisov
TI  - Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1426
EP  - 1436
VL  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/
LA  - ru
ID  - ZVMMF_2012_52_8_a5
ER  - 
%0 Journal Article
%A S. V. Gavrilov
%A A. M. Denisov
%T Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1426-1436
%V 52
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/
%G ru
%F ZVMMF_2012_52_8_a5
S. V. Gavrilov; A. M. Denisov. Iterative method for solving a three-dimensional electrical impedance tomography problem in the case of piecewise constant conductivity and one measurement on the boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1426-1436. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a5/

[1] Borcea L., “Electrical impedance tomography”, Inverse Problems, 18 (2002), 99–136 | MR

[2] Calderon A. P., “On an inverse boundary value problem”, Seminar on Numerical Analys. and its Appl. Continuum Phys., 18, 1980, 65–73 | MR

[3] Uhlmann G., “Commentary on Calderon's paper “On an inverse boundary value problem””, Selectet papers of Alberto P. Calderon with commentary, Amer. Math. Soc., 2008, 623–636 | MR

[4] Alessandrini G., Isakov V., “Analiticity and uniqueness for the inverse conductivity problem”, Rend. Ist. Mat. Univ. Trieste, 28 (1996), 351–369 | MR | Zbl

[5] Barceo B., Fabes E., Seo J. K., “The inverse conductivity problem with one measurement: uniqueness for convex polyhedral”, Proc. Amer. Math. Soc., 122 (1994), 183–189 | MR

[6] Bellout H., Friedman A., Isakov V., “Stability for an inverse problem in potential theory”, Trans. Amer. Math. Soc., 332 (1992), 271–296 | DOI | MR | Zbl

[7] Astala K., Paivarinta L., “Calderon's inverse conductivity problem in the plane”, Ann. Math., 163 (2006), 265–299 | DOI | MR | Zbl

[8] Kang H., Seo J. K., “Inverse conductivity problem with one measurement: uniqueness of balls in $R^3$”, SIAM J. Appl. Math., 59 (1999), 1533–1539 | DOI | MR | Zbl

[9] Kang J., Seo J. K., “Layer potential technique for the inverse conductivity problem”, Inverse Problems, 12 (1996), 267–78 | DOI | MR

[10] Bruhl M., Hanke M., “Numerical implementation of two noniterative methods for locating inclusions by impedance tomography”, Inverse Problems, 16 (2000), 1029–1042 | DOI | MR

[11] Bruhl M., Hanke M., “Recent progress in electrical impedance tomography”, Inverse Problems, 19 (2003), 65–90 | MR

[12] Eckel H., Kress R., “Nonlinear integral equations for the inverse electrical impedance problem”, Inverse Problems, 23 (2007), 475–491 | DOI | MR | Zbl

[13] Kwon O., Seo J. K., Yoon J. R. A., “A real-time algorithm for the location search of discontinuous conductivities with one measurement”, Communs Pure and Appl. Math., 55:1 (2002), 1–29 | DOI | MR | Zbl

[14] Kang H., Seo J. K., Shenn D., “Numerical identification of discontinuous conductivity coefficients”, Inverse Problems, 13 (1997), 113–123 | DOI | MR | Zbl

[15] Denisov A. M., Zakharov E. V., Kalinin A. V., Kalinin V. V., “Chislennye metody resheniya nekotorykh obratnykh zadach elektrofiziologii serdtsa”, Differents. ur-niya, 45:7 (2009), 1014–1022 | MR | Zbl

[16] Gavrilov S. V., Denisov A. M., “Chislennyi metod opredeleniya granitsy neodnorodnosti v kraevoi zadache dlya uravneniya Laplasa v kusochno-odnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 51:8 (2011), 1–14 | MR