Sufficient conditions for the controllability of nonlinear distributed systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1400-1414
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For nonlinear distributed systems representable as a Volterra functional operator equation in a Lebesgue space, sufficient conditions for pointwise controllability with respect to a vector of non-linear functionals are proved. The controls are assumed to be piecewise constant vector functions. The reduction of controlled distributed systems to the functional operator equation under study is illustrated by two examples: a Dirichlet boundary value problem for the diffusion equation and a mixed problem for the transport equation.
@article{ZVMMF_2012_52_8_a3,
     author = {A. V. Chernov},
     title = {Sufficient conditions for the controllability of nonlinear distributed systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1400--1414},
     year = {2012},
     volume = {52},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Sufficient conditions for the controllability of nonlinear distributed systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1400
EP  - 1414
VL  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/
LA  - ru
ID  - ZVMMF_2012_52_8_a3
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Sufficient conditions for the controllability of nonlinear distributed systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1400-1414
%V 52
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/
%G ru
%F ZVMMF_2012_52_8_a3
A. V. Chernov. Sufficient conditions for the controllability of nonlinear distributed systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1400-1414. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/

[1] Vasilev F. P., “O dvoistvennosti v lineinykh zadachakh upravleniya i nablyudeniya”, Differents. uravneniya, 31:11 (1995), 1893–1900

[2] Egorov A. I., Znamenskaya L. N., “Upravlyaemost uprugikh kolebanii sistem s raspredelennymi i sosredotochennymi parametrami po dvum granitsam”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2032–2044 | MR

[3] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[4] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004 | MR | Zbl

[5] Lions J.-L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl

[6] Rozanova A. V., “Upravlyaemost dlya nelineinogo abstraktnogo evolyutsionnogo uravneniya”, Matem. zametki, 76:4 (2004), 553–567 | DOI | MR | Zbl

[7] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[8] Chernov A. V., “O potochechnoi otsenke raznosti reshenii upravlyaemogo funktsionalno-operatornogo uravneniya v lebegovykh prostranstvakh”, Matem. zametki, 88:2 (2010), 288–302 | DOI | MR | Zbl

[9] Chernov A. V., “O volterrovykh funktsionalno-operatornykh igrakh na zadannom mnozhestve”, Matem. teoriya igr i ee prilozheniya, 3:1 (2011), 91–117 | Zbl

[10] Chernov A. V., “Ob odnom mazhorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2011, no. 3, 95–107 | MR | Zbl

[11] Chernov A. V., “O mazhorantno-minorantnom priznake totalnogo sokhraneniya globalnoi razreshimosti upravlyaemogo funktsionalno-operatornogo uravneniya”, Izv. vuzov. Matematika, 2012, no. 3, 62–73 | Zbl

[12] Chernov A. V., “O skhodimosti metoda uslovnogo gradienta v raspredelennykh zadachakh optimizatsii”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1616–1629 | MR

[13] Chernov A. V., “O totalnom sokhranenii globalnoi razreshimosti funktsionalno-operatornykh uravnenii”, Vestnik Nizhegorodskogo un-ta im. N. I. Lobachevskogo, 2009, no. 3, 130–137 | MR

[14] Sumin V. I., Chernov A. V., Volterrovy operatornye uravneniya v banakhovykh prostranstvakh: ustoichivost suschestvovaniya globalnykh reshenii, Dep. v VINITI 25.04.00. No 1198-V00, Nizhegorodskii gos. un-t, N. Novgorod, 2000

[15] Sumin V. I., Chernov A. V., “O dostatochnykh usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii volterrovykh operatornykh uravnenii”, Vestnik Nizhegorodskogo un-ta im. N. I. Lobachevskogo. Ser. Matem. modelirovanie i optimalnoe upravlenie, 2003, no. 1(26), 39–49

[16] Sumin V. I., “Ob obosnovanii gradientnykh metodov dlya raspredelennykh zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 3–21 | MR | Zbl

[17] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestnik Nizhegorodskogo un-ta im. N. I. Lobachevskogo. Ser. Matem. modelirovanie i optimalnoe upravlenie, 1998, no. 2(19), 138–151

[18] Sumin V. I., Chernov A. V., “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. uravneniya, 34:10 (1998), 1402–1411 | MR | Zbl

[19] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl

[20] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GITTL, M., 1956 | MR

[21] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[22] Fedorov V. M., Kurs funktsionalnogo analiza, Lan, SPb., 2005 | Zbl

[23] Vladimirov V. S., Zharinov V. V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2000

[24] Mulliken T. W., “A nonlinear integrodifferential equation in radiative transfer”, J. Soc. Indust. Appl. Math., 13:2 (1965), 388–410 | DOI | MR

[25] Bell D., Glesston S., Teoriya yadernykh reaktorov, Atomizdat, M., 1974

[26] Morozov S. F., Sumin V. I., “Nelineinoe integro-differentsialnoe uravnenie nestatsionarnogo perenosa”, Matem. zametki, 21:5 (1977), 665–676 | MR | Zbl

[27] Plotnikov V. I., Sumin V. I., “Optimizatsiya raspredelennykh sistem v lebegovom prostranstve”, Sib. matem. zhurn., 22:6 (1981), 142–161 | MR | Zbl