Sufficient conditions for the controllability of nonlinear distributed systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1400-1414

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonlinear distributed systems representable as a Volterra functional operator equation in a Lebesgue space, sufficient conditions for pointwise controllability with respect to a vector of non-linear functionals are proved. The controls are assumed to be piecewise constant vector functions. The reduction of controlled distributed systems to the functional operator equation under study is illustrated by two examples: a Dirichlet boundary value problem for the diffusion equation and a mixed problem for the transport equation.
@article{ZVMMF_2012_52_8_a3,
     author = {A. V. Chernov},
     title = {Sufficient conditions for the controllability of nonlinear distributed systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1400--1414},
     publisher = {mathdoc},
     volume = {52},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Sufficient conditions for the controllability of nonlinear distributed systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1400
EP  - 1414
VL  - 52
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/
LA  - ru
ID  - ZVMMF_2012_52_8_a3
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Sufficient conditions for the controllability of nonlinear distributed systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1400-1414
%V 52
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/
%G ru
%F ZVMMF_2012_52_8_a3
A. V. Chernov. Sufficient conditions for the controllability of nonlinear distributed systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1400-1414. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a3/