Study of the properties of convergence of EM-algorithm in probabilistic latent semantic analysis
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1536-1550 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2012_52_8_a13,
     author = {V. A. Leksin},
     title = {Study of the properties of convergence of {EM-algorithm} in probabilistic latent semantic analysis},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1536--1550},
     year = {2012},
     volume = {52},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a13/}
}
TY  - JOUR
AU  - V. A. Leksin
TI  - Study of the properties of convergence of EM-algorithm in probabilistic latent semantic analysis
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1536
EP  - 1550
VL  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a13/
LA  - ru
ID  - ZVMMF_2012_52_8_a13
ER  - 
%0 Journal Article
%A V. A. Leksin
%T Study of the properties of convergence of EM-algorithm in probabilistic latent semantic analysis
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1536-1550
%V 52
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a13/
%G ru
%F ZVMMF_2012_52_8_a13
V. A. Leksin. Study of the properties of convergence of EM-algorithm in probabilistic latent semantic analysis. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1536-1550. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a13/

[1] Hofmann T., Puzicha J., “Latent class models for collaborative filtering”, Internat. Joint Conference in Artificial Intelligence, 1999

[2] Billsus D., Pazzani M. J., “Learning collaborative information filters”, Proc. 15th Internat. Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1998, 46–54

[3] Dempster A. P., Laird N. M., Rubin D. B., “Maximum likelihood from incomplete data via the EM algorithm”, J. of the Royal Statistical Society. Ser. B, 39:1 (1977), 1–38 | MR | Zbl

[4] Hofmann T., “Latent semantic models for collaborative filtering”, ACM Transactions on Information Systems, 22:1 (2004), 89–115 | DOI

[5] Jordan M. I., Xu L., Convergence results for the EM algorithm to mixtures of experts architectures, Tech. Rep. A.I. Memo No 1458, MIT, Cambridge, MA, 1993

[6] Xu L., Jordan M. I., “On convergence properties of the EM algorithm for Gaussian mixtures”, Neural Comput., 8:1 (1996), 129–151 | DOI

[7] Ma J., Xu L., Jordan M. I., “Asymptotic convergence rate of the em algorithm for Gaussian mixtures”, Neural Comput., 12 (2000), 2881–2907 | DOI

[8] Schein A. I., Popescul A., Ungar L. H., Pennock D. M., “Generative models for coldstart recommendations”, The SIGIR'01 Workshop on Recommender Systems, 2001

[9] Leksin V. A., “Symmetrization and overfitting in in probabilistic latent semantic analysis”, Pattern Recognition and Image Analysis, 19:4 (2009), 565–574 | DOI | MR