Piecewise parabolic method on a local stencil in cylindrical coordinates for fluid dynamics simulations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1506-1522 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A PPML algorithm for the simulation of hydrodynamic flows on a cylindrical grid is described. The algorithm is based on a local stencil variant of the popular piecewise parabolic method (PPM). Numerical results obtained a point explosion in a homogeneous medium (Sedov self-similar solution) are presented.
@article{ZVMMF_2012_52_8_a11,
     author = {M. V. Popov},
     title = {Piecewise parabolic method on a~local stencil in cylindrical coordinates for fluid dynamics simulations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1506--1522},
     year = {2012},
     volume = {52},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a11/}
}
TY  - JOUR
AU  - M. V. Popov
TI  - Piecewise parabolic method on a local stencil in cylindrical coordinates for fluid dynamics simulations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1506
EP  - 1522
VL  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a11/
LA  - ru
ID  - ZVMMF_2012_52_8_a11
ER  - 
%0 Journal Article
%A M. V. Popov
%T Piecewise parabolic method on a local stencil in cylindrical coordinates for fluid dynamics simulations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1506-1522
%V 52
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a11/
%G ru
%F ZVMMF_2012_52_8_a11
M. V. Popov. Piecewise parabolic method on a local stencil in cylindrical coordinates for fluid dynamics simulations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1506-1522. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a11/

[1] Fryxell B. et al., “FLASH: An Adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes”, Astrophys. J. Suppl. Ser., 131 (2000), 273–334 | DOI

[2] O'Shea B. et al., Adaptive mesh refinement — theory and applications, Lecture Notes in Comput. Sci. and Engng., 41, Springer-Verlag, Berlin, 2005, 341–350, arXiv: astroph/0403044 | DOI

[3] Stone J. M., Gardiner T. A., Teuben P. et al., “Athena: a new code for astrophysical MHD”, Astrophys. J. Suppl. Ser., 178 (2008), 137–177 | DOI

[4] Almgren A. S. et al., “CASTRO: a new compressible astrophysical solver. I: Hydrodynamics and self-gravity”, Astrophys. J., 715 (2010), 1221–1238 | DOI

[5] Colella P., Woodward P., “The piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl

[6] Popov M. V., Ustyugov S. D., “Kusochno-parabolicheskii metod na lokalnom shablone dlya zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 47:12 (2007), 2055–2075 | MR

[7] Popov M. V., Ustyugov S. D., “Kusochno-parabolicheskii metod na lokalnom shablone dlya idealnoi magnitnoi gazodinamiki”, Zh. vychisl. matem. i matem. fiz., 48:3 (2008), 505–528 | MR | Zbl

[8] Ustyugov S. D., Popov M. V., Kritsuk A. G., Norman M. L., “Piecewise parabolic method on a local stencil for magnetized supersonic turbulence simulation”, J. Comput. Phys., 228 (2009), 7614–7633 | DOI | MR | Zbl

[9] Roe P. L., “Characteristic-based schemes for the euler equations”, Annu. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[10] Toro E. F., “Riemann solvers and numerical methods for fluid dynamics”, A Practical Introduction, Second ed., Springer-Verlag, Berlin, 1999 | MR

[11] Sedov L. I., “Rasprostranenie silnykh vzryvnykh voln”, Prikl. matem. i mekhan., 10:2 (1946), 241–250

[12] Fryxell B., Müller E., Arnett D., “Instabilities and clumping in SN 1987A. I: Early evolution in two dimensions”, Astrophys. J., 367 (1991), 619–634 | DOI

[13] Couch S. M., Pooley D., Wheeler J. C., Milosavljevic M., “Aspherical supernova shock breakout and the observations of SN 2008D”, Astrophys. J., 727 (2011), 104–120 | DOI

[14] Quirk J. A., “Contribution to the Great Riemann solver debate”, Int. J. Num. Meth. Fluids, 18 (1994), 555–574 | DOI | MR | Zbl

[15] Kifonidis K., Plewa T., Janka H.-Th., Müller E., “Non-spherical core collapse supernovae. I: Neutrino-Driven Convection, Rayleigh–Taylor instabilities, and the formation and propagation of metal clumps”, Astron. Astrophys., 2003, 621–649 | DOI

[16] Ismail F., Roe P. L., Nishikawa H., “A Proposed cure to the carbuncle phenomenon”, Comput. Fluid Dynamics 2006, Proceedings of the 4th Int. Conf. on Comput. Fluid Dynamics, ICCFD (Ghent, Belgium 10–14 July 2006), Springer, 2009

[17] Gardiner T. A., Stone J. M., “An unsplit Godunov method for ideal MHD via constrained transport”, J. Comput. Phys., 205 (2005), 509–539 | DOI | MR | Zbl

[18] Rider W. J., Greenough J. A., Kamm J. R., “Accurate monotonicity- and extrema-preserving methods through adaptive nonlinear hybridizations”, J. Comput. Phys., 225 (2007), 1827–1848 | DOI | MR | Zbl