Potential-based numerical solution of Dirichlet problems for the Helmholtz equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1492-1505

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional Dirichlet problems for the Helmholtz equation are considered in generalized formulations. By applying single-layer potentials, they are reduced to Fredholm boundary integral equations of the first kind. The equations are discretized using a special averaging method for integral operators with weak singularities in the kernels. As a result, the integral equations are approximated by systems of linear algebraic equations with easy-to-compute coefficients, which are solved numerically by applying the generalized minimal residual method. A modification of the method is proposed that yields solutions in the spectra of interior Dirichlet problems and integral operators when the integral equations are not equivalent to the original differential problems and are not well-posed. Numerical results are presented for assessing the capabilities of the approach.
@article{ZVMMF_2012_52_8_a10,
     author = {A. A. Kashirin and S. I. Smagin},
     title = {Potential-based numerical solution of {Dirichlet} problems for the {Helmholtz} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1492--1505},
     publisher = {mathdoc},
     volume = {52},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/}
}
TY  - JOUR
AU  - A. A. Kashirin
AU  - S. I. Smagin
TI  - Potential-based numerical solution of Dirichlet problems for the Helmholtz equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1492
EP  - 1505
VL  - 52
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/
LA  - ru
ID  - ZVMMF_2012_52_8_a10
ER  - 
%0 Journal Article
%A A. A. Kashirin
%A S. I. Smagin
%T Potential-based numerical solution of Dirichlet problems for the Helmholtz equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1492-1505
%V 52
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/
%G ru
%F ZVMMF_2012_52_8_a10
A. A. Kashirin; S. I. Smagin. Potential-based numerical solution of Dirichlet problems for the Helmholtz equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1492-1505. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/