Potential-based numerical solution of Dirichlet problems for the Helmholtz equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1492-1505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three-dimensional Dirichlet problems for the Helmholtz equation are considered in generalized formulations. By applying single-layer potentials, they are reduced to Fredholm boundary integral equations of the first kind. The equations are discretized using a special averaging method for integral operators with weak singularities in the kernels. As a result, the integral equations are approximated by systems of linear algebraic equations with easy-to-compute coefficients, which are solved numerically by applying the generalized minimal residual method. A modification of the method is proposed that yields solutions in the spectra of interior Dirichlet problems and integral operators when the integral equations are not equivalent to the original differential problems and are not well-posed. Numerical results are presented for assessing the capabilities of the approach.
@article{ZVMMF_2012_52_8_a10,
     author = {A. A. Kashirin and S. I. Smagin},
     title = {Potential-based numerical solution of {Dirichlet} problems for the {Helmholtz} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1492--1505},
     year = {2012},
     volume = {52},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/}
}
TY  - JOUR
AU  - A. A. Kashirin
AU  - S. I. Smagin
TI  - Potential-based numerical solution of Dirichlet problems for the Helmholtz equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1492
EP  - 1505
VL  - 52
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/
LA  - ru
ID  - ZVMMF_2012_52_8_a10
ER  - 
%0 Journal Article
%A A. A. Kashirin
%A S. I. Smagin
%T Potential-based numerical solution of Dirichlet problems for the Helmholtz equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1492-1505
%V 52
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/
%G ru
%F ZVMMF_2012_52_8_a10
A. A. Kashirin; S. I. Smagin. Potential-based numerical solution of Dirichlet problems for the Helmholtz equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1492-1505. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a10/

[1] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Per. s angl., Mir, M., 1987 | MR

[2] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000 | MR

[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1999 | MR

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[5] Ihlenburg F., Finite element analysis of acoustic scattering, Springer-Verlag, New-York, 1998 | MR | Zbl

[6] Dmitriev V. I., Zakharov E. V., Integralnye uravneniya v kraevykh zadachakh elektrodinamiki, MGU, M., 1987 | MR

[7] Tsetsokho V. A., Voronin V. V., Smagin S. I., “O reshenii zadach difraktsii potentsialami prostogo sloya”, Dokl. AN SSSR, 302:2 (1988), 323–327 | MR

[8] Dmitriev V. I., Zakharov E. V., “O chislennom reshenii nekotorykh uravnenii Fredgolma 1 roda”, Vychisl. metody i programmirovanie, 10, MGU, M., 1968, 49–54 | MR

[9] Voronin V. V., Tsetsokho V. A., “Interpolyatsionnyi metod resheniya integralnogo uravneniya 1 roda s logarifmicheskoi osobennostyu”, Dokl. AN SSSR, 216:6 (1974), 1209–1211 | MR | Zbl

[10] Smagin S. I., “Chislennoe reshenie integralnogo uravneniya I roda so slaboi osobennostyu dlya plotnosti potentsiala prostogo sloya”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1663–1673 | MR

[11] Hsiao G. H., Wendland W. L., Boundary integral equations, Springer, Berlin, 2008 | MR

[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[13] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[14] Atkinson K. E., “A discrete Galerkin method for first kind integral equations with a loganthmic kernel”, J. Integral Equat. Appl., 1:3 (1988), 343–363 | DOI | MR | Zbl

[15] Brebbiya K., Teles Zh., Vroubel L., Metody granichnykh elementov, Mir, M., 1987 | MR

[16] Kashirin A. A., Issledovanie i chislennoe reshenie integralnykh uravnenii trekhmernykh statsionarnykh zadach difraktsii akusticheskikh voln, Dis. ... kand. fiz.-matem. nauk, Khabarovsk, 2006 | Zbl

[17] Kashirin A. A., Smagin S. I., “On numerical solution of integral equations for three-dimensional diffraction problems”, MTPP 2010, LNGS, 6083, Springer, Berlin, 2010, 11–19

[18] Ershov N. E., Illarionova L. V., “Chislennoe reshenie trekhmernoi statsionarnoi zadachi difraktsii uprugikh voln”, Zh. vychisl. matam. i matem. fiz., 50:3 (2010), 464–480 | MR | Zbl

[19] Beale J. T., “A grid-based boundary integral method for elliptic problems in three dimensions”, SIAM J. Numer. Analys., 42:2 (2004), 599–620 | DOI | MR | Zbl

[20] Tausch J., “A spectral method for the fast solution of boundary integral formulations of elliptic problems”, Integral Meth. Sci. and Eng., eds. S. Constanda, Z. Nashed, D. Rollins, Birkhauser, 2006, 289–297 | DOI | MR | Zbl

[21] Saad Y., Schultz M., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput., 7:3 (1986), 856–869 | DOI | MR | Zbl

[22] Panich O. I., “K voprosu o razreshimosti vneshnikh kraevykh zadach dlya volnovogo uravneniya i uravnenii Maksvella”, Uspekhi matem. nauk, 20:1 (1965), 221–226 | MR

[23] Engleder S., Steinbach O., “Stabilized boundary element methods for exterior Helmholtz problems”, Numer. Math., 110:2 (2008), 145–160 | DOI | MR | Zbl

[24] Kleinman R. E., Roach G. F., “On modified Green functions in exterior problems for the Helmholtz equation”, Proc. Royal Soc. London, 383:1785 (1982), 313–332 | DOI | MR | Zbl

[25] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Analys., 19:3 (1988), 613–626 | DOI | MR | Zbl

[26] Smagin S. I., “Chislennoe reshenie integralnogo uravneniya I roda so slaboi osobennostyu na zamknutoi poverkhnosti”, Dokl. AN SSSR, 303:5 (1988), 1048–1051

[27] Vatson G. N., Teoriya besselevykh funktsii, v. 1, Izd-vo inostr. lit., M., 1949