Estimation of the remainder of a cubature formula on a Chebyshev grid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1373-1377
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $C(Q)$ denote the space of continuous functions $f(x,y)$ in the square $Q=[-1,1]\times[-1,1]$ with the norm \begin{equation} \| f\|=\max(|(f(x,y)|), \quad (x,y)\in Q \end{equation} On a Chebyshev grid, a cubature formula of the form \begin{eqnarray} &\int_{-1}^1\int_{-1}^1\frac{1}{\sqrt{(1-x^2)(1-y^2)}}f(x,y)dxdy= \\ &\frac{\pi^2}{mn}\sum_{i=1}^n\sum_{j=1}^mf\big (\cos\frac{2i-1}{2n}\pi,cos\frac{2j-1}{2m}\pi\big )+R_{m,n}(f) \end{eqnarray} is considered in some class $H(r_1,r_2)$ of functions $f\in C(Q)$, defined by a generalized shift operator. The remainder $R_{m,n}(f)$ is proved to satisfy the estimate: $$ \sup_{f\in H(r_1,r_2)}| R_{m,n}(f) |=O(n^{-r_1+1}+m^{-r_2+1}) $$ where $r_1,r_2>1,\lambda^{-1}\leq n/m\leq\lambda,\lambda>0$; and the constant in $O(1)$, depends on $\lambda$. Библ. 4. Ключевые слова: кубатурная формула, чебышевская сетка, оценка остаточного члена.
@article{ZVMMF_2012_52_8_a1,
author = {V. A. Abilov and M. K. Kerimov},
title = {Estimation of the remainder of a~cubature formula on {a~Chebyshev} grid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1373--1377},
year = {2012},
volume = {52},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a1/}
}
TY - JOUR AU - V. A. Abilov AU - M. K. Kerimov TI - Estimation of the remainder of a cubature formula on a Chebyshev grid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1373 EP - 1377 VL - 52 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a1/ LA - ru ID - ZVMMF_2012_52_8_a1 ER -
V. A. Abilov; M. K. Kerimov. Estimation of the remainder of a cubature formula on a Chebyshev grid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1373-1377. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a1/
[1] Levin M., “On the evaluation of double integrals”, Math. Comput., 39:159 (1982), 173–177 | DOI | MR | Zbl
[2] Levin M., Girshovich J., Optimal quadrature formulas, Teubner-Verlag, Leipzig, 1979 | MR | Zbl
[3] Abilov V. A., Abilova F. V., “Ob odnoi kvadraturnoi formule”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 451–458 | MR | Zbl
[4] Abilov V. A., Kerimov M. K., “Ob otsenkakh ostatochnykh chlenov kratnykh ryadov Fure–Chebysheva i kubaturnykh formul chebyshevskogo tipa”, Zh. vychisl. matem. i matem. fiz., 43:5 (2003), 643–663 | MR | Zbl