On the regularization of a class of integral equations of the first kind whose kernels are discontinuous on the diagonals
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1363-1372
Voir la notice de l'article provenant de la source Math-Net.Ru
For a class of integral equations of the first kind whose kernels are discontinuous on the diagonals, the convergence of the Lavrent'ev regularization method is proved by using methods of the spectral theory of integral operators. These methods lead to a special Dirac system, and finding the asymptotics of fundamental solutions is an important part of the proof.
@article{ZVMMF_2012_52_8_a0,
author = {A. P. Khromov and G. V. Khromova},
title = {On the regularization of a~class of integral equations of the first kind whose kernels are discontinuous on the diagonals},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1363--1372},
publisher = {mathdoc},
volume = {52},
number = {8},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a0/}
}
TY - JOUR AU - A. P. Khromov AU - G. V. Khromova TI - On the regularization of a class of integral equations of the first kind whose kernels are discontinuous on the diagonals JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1363 EP - 1372 VL - 52 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a0/ LA - ru ID - ZVMMF_2012_52_8_a0 ER -
%0 Journal Article %A A. P. Khromov %A G. V. Khromova %T On the regularization of a class of integral equations of the first kind whose kernels are discontinuous on the diagonals %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1363-1372 %V 52 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a0/ %G ru %F ZVMMF_2012_52_8_a0
A. P. Khromov; G. V. Khromova. On the regularization of a class of integral equations of the first kind whose kernels are discontinuous on the diagonals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 8, pp. 1363-1372. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_8_a0/