@article{ZVMMF_2012_52_7_a9,
author = {M. E. Frolov and M. A. Churilova},
title = {Mesh adaptation based on functional a posteriori estimates with {Raviart{\textendash}Thomas} approximation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1277--1288},
year = {2012},
volume = {52},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/}
}
TY - JOUR AU - M. E. Frolov AU - M. A. Churilova TI - Mesh adaptation based on functional a posteriori estimates with Raviart–Thomas approximation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1277 EP - 1288 VL - 52 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/ LA - ru ID - ZVMMF_2012_52_7_a9 ER -
%0 Journal Article %A M. E. Frolov %A M. A. Churilova %T Mesh adaptation based on functional a posteriori estimates with Raviart–Thomas approximation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1277-1288 %V 52 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/ %G ru %F ZVMMF_2012_52_7_a9
M. E. Frolov; M. A. Churilova. Mesh adaptation based on functional a posteriori estimates with Raviart–Thomas approximation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1277-1288. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/
[1] Repin S.I., A posteriori estimates for partial differential equations, Walter de Gruyter, Berlin, New York, 2008 | MR
[2] Babuska I., Whiteman J.R., Strouboulis T., Finite elements. An introduction to the method and error estimation, Oxford University Press, Oxford, 2011 | MR
[3] Verfurth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley, Berlin; Teubner, Stuttgart, 1996
[4] Ainsworth M., Oden J.T., A posteriori error estimation in finite element analysis, John Wiley and Sons, New York, 2000 | MR
[5] Babuska I., Strouboulis T., The finite element method and its reliability, Oxford University Press, New York, 2001 | MR | Zbl
[6] Bangerth W., Rannacher R., Adaptive finite element methods for differential equations, Lect. Math., ETH Zurich, Birkhauser, Basel, 2003 | MR | Zbl
[7] Zienkiewicz O.C., Taylor R.L., Finite element method, v. 1, The basis, 5th ed., Butterworth–Heinemann, Oxford, 2000 | MR
[8] Neittaanmaki P., Repin S.I., Reliable methods for computer simulation – error control and a posteriori estimates, Elsevier, Amsterdam, 2004 | MR
[9] Mikhlin S.G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970
[10] Prager W., Synge J.L., “Approximations in elasticity based on the concept of function space”, Quart. Appl. Math., 5 (1947), 241–269 | MR | Zbl
[11] Ladeveze P., Pelle J.P., Mastering calculations in linear and nonlinear mechanics, Springer, New York, 2005 | MR | Zbl
[12] Roberts J.E., Thomas J.-M., “Mixed and hybrid methods”, Handbook of Numerical Analysis, v. II, Part I, Elsevier, Amsterdam, 1991, 527–637 | MR
[13] Braess D., Finite Elements. Theory, fast solvers and applications in solid mechanics, 3rd. ed., Cambridge Univ. Press, Cambridge, 2007 | Zbl
[14] Repin S.L, Sauter S., Smolianski A., “A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions”, Computing, 70:3 (2003), 205–233 | MR | Zbl
[15] Repin S.I., Sauter S., Smolianski A., “A posteriori error estimation for the Poisson equation with mixed Dirichlet–Neumann boundary conditions”, J. Comput. Appl. Math., 164–165 (2004), 601–612 | DOI | MR | Zbl
[16] Frolov M.E., Neittaanmaki P., Repin S.I., “On computational properties of a posteriori error estimates based upon the method of duality error majorants”, Numer. Math. Advanced Appl. (ENUMATH, 2003), Springer, Berlin, Heidelberg, 2004, 346–357 | DOI | MR | Zbl
[17] Frolov M.E., Aposteriornye otsenki tochnosti priblizhennykh reshenii variatsionnykh zadach dlya ellipticheskikh uravnenii divergentnogo tipa, Diss. $\dots$ kand. fiz.-matem. nauk, GPU, SPb, 2004
[18] Valdman J., “Minimization of functional majorant in a posteriori error analysis based on $H$(div) multigrid-preconditioned CG method”, Adv. Numer. Anal., 2009, Article ID 164519, 15 p. | MR | Zbl
[19] Lazarov R., Repin S.L, Tomar S.K., “Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems”, Numer. Methods Partial Differ. Equat., 25:4 (2009), 952–971 | DOI | MR | Zbl
[20] Ladyzhenskaya O.A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[21] Repin S.I., “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comp., 69:230 (2000), 481–500 | DOI | MR | Zbl
[22] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer, New York, 1991 | MR | Zbl
[23] S'yarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980
[24] Shaidurov V.V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989
[25] Boffi D., Brezzi F., Demkowicz L.F., Duran R.G., Falk R.S., Fortin M., Mixed finite elements, compatibility conditions and applications, Springer, Berlin, 2006 | MR
[26] Brenner S.G., Ridgway Scott L., The mathematical theory of finite element methods, Springer, New York, 2008 | MR
[27] Raviart P.A., Thomas J.M., “A mixed finite element method for second order elliptic problems”, Lect. Notes in Math., 606 (1977), 292–315, Springer, Berlin | DOI | MR
[28] Repin S.I., Frolov M.E., “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 42:12 (2002), 1774–1787 | MR | Zbl