Mesh adaptation based on functional a posteriori estimates with Raviart–Thomas approximation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1277-1288

Voir la notice de l'article provenant de la source Math-Net.Ru

Adaptive algorithms based on functional a posteriori estimates for the Dirichlet problem for the stationary diffusion equation with jump discontinuities in the equation coefficients are compared. The algorithms have been implemented in MATLAB with the use of both standard finite element approximations and the zero-order Raviart–Thomas approximation. The adaptation results are analyzed using indicators of the local error distribution. Specifically, sequences of finite-element partitions, effectivity indices of estimates, and relative errors of approximate solutions are compared.
@article{ZVMMF_2012_52_7_a9,
     author = {M. E. Frolov and M. A. Churilova},
     title = {Mesh adaptation based on functional a posteriori estimates with {Raviart{\textendash}Thomas} approximation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1277--1288},
     publisher = {mathdoc},
     volume = {52},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/}
}
TY  - JOUR
AU  - M. E. Frolov
AU  - M. A. Churilova
TI  - Mesh adaptation based on functional a posteriori estimates with Raviart–Thomas approximation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1277
EP  - 1288
VL  - 52
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/
LA  - ru
ID  - ZVMMF_2012_52_7_a9
ER  - 
%0 Journal Article
%A M. E. Frolov
%A M. A. Churilova
%T Mesh adaptation based on functional a posteriori estimates with Raviart–Thomas approximation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1277-1288
%V 52
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/
%G ru
%F ZVMMF_2012_52_7_a9
M. E. Frolov; M. A. Churilova. Mesh adaptation based on functional a posteriori estimates with Raviart–Thomas approximation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1277-1288. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a9/