Solution of boundary value problems in cylinders separated by a three-layer film into two semicylinders
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1261-1266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problems are considered for the class of equations $\partial_x^2u+L[u]=0$ in cylinders $D=(x\in R,\,y\in Q\subseteq R^m)$ with an infinitely thin film at $x=0$ consisting of three sublayers with alternating high and low permeability ($L$-linear differential operator with respect to $y_i$). The solutions of the problems are expressed in terms of those of the corresponding classical boundary value problems in homogeneous cylinders $D$ with no film. The resulting formulas have the form of simple quadrature rules, which are amenable to numerical computations.
@article{ZVMMF_2012_52_7_a7,
     author = {N. V. Nutchina-Pestryakova and S. E. Kholodovskii},
     title = {Solution of boundary value problems in cylinders separated by a three-layer film into two semicylinders},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1261--1266},
     year = {2012},
     volume = {52},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a7/}
}
TY  - JOUR
AU  - N. V. Nutchina-Pestryakova
AU  - S. E. Kholodovskii
TI  - Solution of boundary value problems in cylinders separated by a three-layer film into two semicylinders
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1261
EP  - 1266
VL  - 52
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a7/
LA  - ru
ID  - ZVMMF_2012_52_7_a7
ER  - 
%0 Journal Article
%A N. V. Nutchina-Pestryakova
%A S. E. Kholodovskii
%T Solution of boundary value problems in cylinders separated by a three-layer film into two semicylinders
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1261-1266
%V 52
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a7/
%G ru
%F ZVMMF_2012_52_7_a7
N. V. Nutchina-Pestryakova; S. E. Kholodovskii. Solution of boundary value problems in cylinders separated by a three-layer film into two semicylinders. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1261-1266. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a7/

[1] Vasilev B.A., “Ploskaya statsionarnaya zadacha teorii teploprovodnosti dlya sostavnoi klinovidnoi oblasti”, Differents. ur-niya, 20:3 (1984), 530–533 | MR | Zbl

[2] Gurevich A.V., Krylov A.L., Topor D.N., “Reshenie ploskikh zadach gidrodinamiki poristykh sred vblizi razryvnykh narushenii metodom kompleksnogo potentsiala”, Dokl. AN SSSR, 298:4 (1988), 846–850 | Zbl

[3] Krutitskii P.A., Kolybasova V.V., “Obobschenie zadachi Neimana dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, Differents. ur-niya, 41:9 (2005), 1155–1165 | MR | Zbl

[4] Krutitskii P.A., Prozorov K.V., “K zadache dlya uravneniya Gelmgoltsa vne razrezov na ploskosti s zadaniem usloviya Dirikhle i usloviya s kosoi proizvodnoi na raznykh storonakh razrezov”, Differents. ur-niya, 47:9 (2011), 1268–1283 | MR

[5] Krutitskii P.A., Chikilev A.O., Krutitskaya N.Ch., Kolybasova V.V., “On a generalization of the Neumann problem for the Laplace equation outside cuts in a plane”, Math. Meth. in the Appl. Sci., 28 (2005), 593–606 | DOI | MR | Zbl

[6] Krutitskii P.A., “The jump problem for the Helmholtz equation and singularities at the edges”, Arr. Math. Letters, 13 (2000), 71–76 | DOI | MR | Zbl

[7] Krutitskii P.A., “Explicit solution of the jump problem for the Laplace equation and singularities at the edges”, Math. Problems in Engng., 7:1 (2001), 1–13 | DOI | MR | Zbl

[8] Nomirovskii D.A., “Obobschennaya razreshimost parabolicheskikh sistem s neodnorodnymi usloviyami sopryazheniya tipa neidealnogo kontakta”, Differents. ur-niya, 40:10 (2004), 1390–1399 | MR | Zbl

[9] Kholodovskii S.E., “Metod svertyvaniya razlozhenii Fure v reshenii kraevykh zadach s peresekayuschimisya liniyami sopryazheniya”, Zh. vychisl. matem. i matem. fiz., 47:9 (2007), 1550–1556 | MR

[10] Kholodovskii S.E., “Metod svertyvaniya razlozhenii Fure. Sluchai treschiny (zavesy) v neodnorodnom prostranstve”, Differents. ur-niya, 45:8 (2009), 1204–1208 | MR | Zbl