@article{ZVMMF_2012_52_7_a6,
author = {A. V. Makarenko},
title = {Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1248--1260},
year = {2012},
volume = {52},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/}
}
TY - JOUR AU - A. V. Makarenko TI - Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1248 EP - 1260 VL - 52 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/ LA - ru ID - ZVMMF_2012_52_7_a6 ER -
%0 Journal Article %A A. V. Makarenko %T Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1248-1260 %V 52 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/ %G ru %F ZVMMF_2012_52_7_a6
A. V. Makarenko. Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1248-1260. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/
[1] Morse H.M., “A one-to-one representation of geodesics on a surface of negative curvature”, Amer. J. of Math., 43:1 (1921), 33–51 | DOI | MR | Zbl
[2] Morse H.M., Hedlung G.A., “Symbolic dynamics I, II”, Amer. J. of Math., 60:4 (1938), 815–866 ; 62:1 (1940), 1–42 | DOI | MR | DOI | MR
[3] Birkhoff G.D., “Nouvelles recherches sur les systemes dynamiques”, Collected Math. Papers, 2 (1950), 530–662, Amer. Math. Soc., Providence, R. I.
[4] Bouen R., “Metody simvolicheskoi dinamiki”, Sb. statei, Mir, M., 1979
[5] Tabor M., Khaos i integriruemost v nelineinoi dinamike, Editorial URSS, M., 2001
[6] Loskutov A.Yu., “Ocharovanie khaosa”, UFN, 180:12 (2010), 1305–1329 | DOI
[7] Hsu C.S., Cell-to-cell mapping: a method of global analysis for nonlinear systems, Springer, N.Y., 1987 | MR | Zbl
[8] Osipenko G.S., Ilyin I.V., “Methods of Applied Symbolic Dynamics”, Proc. Dynamical Systems and Applicat., 2 (1996), 451–460 | MR
[9] Dellnitz M., Hohmann A., “A subdivision algorithm for the computation of unstable manifolds and global attractors”, Numerische Math., 75:3 (1997), 293–317 | DOI | MR | Zbl
[10] Balakrishnan G., Shoeb A., Syed Z., “Creating symbolic representations of electroencephalographic signals: An investigation of alternate methodologies on intracranial data”, Annual Internat. Conference of the IEEE, EMBC, 2010, 4683–4686
[11] Keller K., Lauffer H., “Symbolic analysis of high-dimensional time series”, Int. J. Bifurcation Chaos, 13 (2003), 2657–2668 | DOI | MR | Zbl
[12] Douglas L., Brian M., An introduction to symbolic dynamics and Ccoding, Cambridge University Press, 1996 | MR
[13] Pichl L., Yamano T., Kaizoji T., “On the symbolic analysis of market indicators with the dynamic Programming approach”, Lect. Notes in Comput. Sci., 3973, 2006, 432–441 | DOI
[14] Alur R., Henzinger T.A., Wong-Toi H., “Symbolic analysis of hybrid systems”, Decision and Control, 1997, Proc. of the 36th IEEE Conference on Decision and Control, v. 1, 1997, 702–707
[15] Porta A., D'Addio G., Pinna G.D. et al., “Symbolic analysis of 24h holter heart period variability series: comparison between normal and heart failure patients”, Comput. Cardiology, 2005, 575–578 | DOI
[16] Hadamar J., “Les surfaces a courbures opposees et leur ligues geodesiques”, J. de mathematiques pure et appliquees, 5 ser., 4 (1898), 27–73 | Zbl
[17] Smeil S., “Strukturno ustoichivyi differentsiruemyi gomeomorfizm s beskonechnym chislom periodicheskikh tochek”, Tr. Mezhdunar. simpoziuma po nelineinym kolebaniyam, v. 2, Kiev, 1963, 365–366
[18] Osipenko G.S., Komarchev I., “Applied symbolic dynamics: construction of periodic trajectories”, WSSIAA, 4 (1995), 573–587 | MR | Zbl
[19] Dellnitz M., Junge O., “An adaptive subdivision technique for the approximation of attractors and invariant measures”, Comput. Visual. Sci., 1:2 (1998), 63–68 | DOI | Zbl
[20] Makarenko A.V., “Vyrazhenie struktury dinamicheskogo protsessa vo vremennói oblasti v terminakh differentsialnoi geometrii”, Izv. vuzov. Prikl. nelineinaya dinamika, 2006, no. 4, 71–86
[21] Makarenko A.V., “Rekursivnyi tangentsialno-uglovoi operator kak analizator sinkhronizatsii khaosa”, Pisma v ZhTF, 37:16 (2011), 86–94
[22] May R.M., “Simple mathematical models with very complicated dynamics”, Nature, 261 (1976), 459–467 | DOI
[23] Grebogi C., Ott E., Yorke J.A., “Crises, sudden, changes in chaotic attractors, and transient chaos”, Physica D, 7:1–3 (1983), 181–200 | DOI | MR
[24] Feigenbaum M.J., “Universal behavior in nonlinear systems”, Physica D, 7:1-3 (1983), 16–39 | DOI | MR