Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1248-1260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new computer-aided method for the symbolic analysis of discrete mappings and sequences is proposed that is based on a finite discretization of the velocity-curvature space. A minimum alphabet is introduced in a natural way. A number of initial analytical measures are defined that make it possible to study the dynamics structure of multidimensional discrete mappings, continuous systems, and dynamic processes. The proposed analytical method is tested by applying it to a logistic oscillator in the domain to the right of the period-doubling limit point, and the method is shown to be informative. It is revealed that the oscillation structure of the logistic map is highly asymmetric. The critical parameter values are found at which the geometric structure of the map trajectories changes qualitatively.
@article{ZVMMF_2012_52_7_a6,
     author = {A. V. Makarenko},
     title = {Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1248--1260},
     year = {2012},
     volume = {52},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/}
}
TY  - JOUR
AU  - A. V. Makarenko
TI  - Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1248
EP  - 1260
VL  - 52
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/
LA  - ru
ID  - ZVMMF_2012_52_7_a6
ER  - 
%0 Journal Article
%A A. V. Makarenko
%T Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1248-1260
%V 52
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/
%G ru
%F ZVMMF_2012_52_7_a6
A. V. Makarenko. Multidimensional dynamic processes studied by symbolic analysis in velocity-curvature space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1248-1260. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a6/

[1] Morse H.M., “A one-to-one representation of geodesics on a surface of negative curvature”, Amer. J. of Math., 43:1 (1921), 33–51 | DOI | MR | Zbl

[2] Morse H.M., Hedlung G.A., “Symbolic dynamics I, II”, Amer. J. of Math., 60:4 (1938), 815–866 ; 62:1 (1940), 1–42 | DOI | MR | DOI | MR

[3] Birkhoff G.D., “Nouvelles recherches sur les systemes dynamiques”, Collected Math. Papers, 2 (1950), 530–662, Amer. Math. Soc., Providence, R. I.

[4] Bouen R., “Metody simvolicheskoi dinamiki”, Sb. statei, Mir, M., 1979

[5] Tabor M., Khaos i integriruemost v nelineinoi dinamike, Editorial URSS, M., 2001

[6] Loskutov A.Yu., “Ocharovanie khaosa”, UFN, 180:12 (2010), 1305–1329 | DOI

[7] Hsu C.S., Cell-to-cell mapping: a method of global analysis for nonlinear systems, Springer, N.Y., 1987 | MR | Zbl

[8] Osipenko G.S., Ilyin I.V., “Methods of Applied Symbolic Dynamics”, Proc. Dynamical Systems and Applicat., 2 (1996), 451–460 | MR

[9] Dellnitz M., Hohmann A., “A subdivision algorithm for the computation of unstable manifolds and global attractors”, Numerische Math., 75:3 (1997), 293–317 | DOI | MR | Zbl

[10] Balakrishnan G., Shoeb A., Syed Z., “Creating symbolic representations of electroencephalographic signals: An investigation of alternate methodologies on intracranial data”, Annual Internat. Conference of the IEEE, EMBC, 2010, 4683–4686

[11] Keller K., Lauffer H., “Symbolic analysis of high-dimensional time series”, Int. J. Bifurcation Chaos, 13 (2003), 2657–2668 | DOI | MR | Zbl

[12] Douglas L., Brian M., An introduction to symbolic dynamics and Ccoding, Cambridge University Press, 1996 | MR

[13] Pichl L., Yamano T., Kaizoji T., “On the symbolic analysis of market indicators with the dynamic Programming approach”, Lect. Notes in Comput. Sci., 3973, 2006, 432–441 | DOI

[14] Alur R., Henzinger T.A., Wong-Toi H., “Symbolic analysis of hybrid systems”, Decision and Control, 1997, Proc. of the 36th IEEE Conference on Decision and Control, v. 1, 1997, 702–707

[15] Porta A., D'Addio G., Pinna G.D. et al., “Symbolic analysis of 24h holter heart period variability series: comparison between normal and heart failure patients”, Comput. Cardiology, 2005, 575–578 | DOI

[16] Hadamar J., “Les surfaces a courbures opposees et leur ligues geodesiques”, J. de mathematiques pure et appliquees, 5 ser., 4 (1898), 27–73 | Zbl

[17] Smeil S., “Strukturno ustoichivyi differentsiruemyi gomeomorfizm s beskonechnym chislom periodicheskikh tochek”, Tr. Mezhdunar. simpoziuma po nelineinym kolebaniyam, v. 2, Kiev, 1963, 365–366

[18] Osipenko G.S., Komarchev I., “Applied symbolic dynamics: construction of periodic trajectories”, WSSIAA, 4 (1995), 573–587 | MR | Zbl

[19] Dellnitz M., Junge O., “An adaptive subdivision technique for the approximation of attractors and invariant measures”, Comput. Visual. Sci., 1:2 (1998), 63–68 | DOI | Zbl

[20] Makarenko A.V., “Vyrazhenie struktury dinamicheskogo protsessa vo vremennói oblasti v terminakh differentsialnoi geometrii”, Izv. vuzov. Prikl. nelineinaya dinamika, 2006, no. 4, 71–86

[21] Makarenko A.V., “Rekursivnyi tangentsialno-uglovoi operator kak analizator sinkhronizatsii khaosa”, Pisma v ZhTF, 37:16 (2011), 86–94

[22] May R.M., “Simple mathematical models with very complicated dynamics”, Nature, 261 (1976), 459–467 | DOI

[23] Grebogi C., Ott E., Yorke J.A., “Crises, sudden, changes in chaotic attractors, and transient chaos”, Physica D, 7:1–3 (1983), 181–200 | DOI | MR

[24] Feigenbaum M.J., “Universal behavior in nonlinear systems”, Physica D, 7:1-3 (1983), 16–39 | DOI | MR