Optimal control of a dynamic system with multiple uncertainty in the initial state as based on imperfect measurements of input and output signals
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1215-1230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An optimal control problem for a linear nonstationary dynamic system with uncertainty in the initial state is considered. Based on preposterior analysis, an algorithm for implementing an optimal closable output loop is constructed. The control results are illustrated using a numerical example and are compared with those based on two-stage disclosable output loop.
@article{ZVMMF_2012_52_7_a3,
     author = {R. Gabasov and F. M. Kirillova and E. I. Poyasok},
     title = {Optimal control of a dynamic system with multiple uncertainty in the initial state as based on imperfect measurements of input and output signals},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1215--1230},
     year = {2012},
     volume = {52},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a3/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - F. M. Kirillova
AU  - E. I. Poyasok
TI  - Optimal control of a dynamic system with multiple uncertainty in the initial state as based on imperfect measurements of input and output signals
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1215
EP  - 1230
VL  - 52
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a3/
LA  - ru
ID  - ZVMMF_2012_52_7_a3
ER  - 
%0 Journal Article
%A R. Gabasov
%A F. M. Kirillova
%A E. I. Poyasok
%T Optimal control of a dynamic system with multiple uncertainty in the initial state as based on imperfect measurements of input and output signals
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1215-1230
%V 52
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a3/
%G ru
%F ZVMMF_2012_52_7_a3
R. Gabasov; F. M. Kirillova; E. I. Poyasok. Optimal control of a dynamic system with multiple uncertainty in the initial state as based on imperfect measurements of input and output signals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1215-1230. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a3/

[1] Feldbaum A.A., Osnovy teorii optimalnykh avtomaticheskikh sistem, Fizmatgiz, M., 1963

[2] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[3] Bellman R., Protsessy regulirovaniya s adaptatsiei, Nauka, M., 1964

[4] Gabasov R., Kirillova F.M., Poyasok E.I., “Optimalnoe preposteriornoe nablyudenie dinamicheskikh sistem”, Avtomatika i telemekhan., 2009, no. 8, 70–83 | MR

[5] Gabasov R., Kirillova F.M., Kostyukova O.I., “Sintez optimalnykh upravlenii dlya dinamicheskikh sistem pri nepolnoi i netochnoi informatsii ob ikh sostoyaniyakh”, Tr. matem. in-ta im. V.A. Steklova RAN. Optimalnoe upravlenie i differents. uravneniya, 211 (1995), 140–152 | MR | Zbl

[6] Gabasov R., Dmitruk N.M., Kirillova F.M., “Optimalnoe upravlenie mnogomernymi sistemami po netochnym izmereniyam ikh vykhodnykh signalov”, Optim. upr. i differents. igry, Sb. st., Tr. In-ta matem. i mekhan. UrO RAN, 10, no. 2, 2004, 35–57