Numerical model for the shallow water equations on a curvilinear grid with the preservation of the Bernoulli integral
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1317-1324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Methodological aspects concerning the construction of a two-dimensional numerical model for reservoir flows based on the shallow water equations are considered. A numerical scheme is constructed by applying the control volume method on staggered grids in combination with the Bernoulli integral, which is used to interpolate the desired fields inside a grid cell. The implementation of the method yields a monotone numerical scheme. The results of numerical integration are compared with the exact solution.
@article{ZVMMF_2012_52_7_a13,
     author = {V. A. Shlychkov},
     title = {Numerical model for the shallow water equations on a curvilinear grid with the preservation of the {Bernoulli} integral},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1317--1324},
     year = {2012},
     volume = {52},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a13/}
}
TY  - JOUR
AU  - V. A. Shlychkov
TI  - Numerical model for the shallow water equations on a curvilinear grid with the preservation of the Bernoulli integral
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1317
EP  - 1324
VL  - 52
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a13/
LA  - ru
ID  - ZVMMF_2012_52_7_a13
ER  - 
%0 Journal Article
%A V. A. Shlychkov
%T Numerical model for the shallow water equations on a curvilinear grid with the preservation of the Bernoulli integral
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1317-1324
%V 52
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a13/
%G ru
%F ZVMMF_2012_52_7_a13
V. A. Shlychkov. Numerical model for the shallow water equations on a curvilinear grid with the preservation of the Bernoulli integral. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1317-1324. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a13/

[1] Basilev O.F., “Matematicheskoe modelirovanie gidravlicheskikh i gidrologicheskikh protsessov v vodoemakh i vodotokakh”, obzor rabot, vypolnennykh v Sibirskom otdelenii Rossiiskoi Akademii nauk, Vodnye resursy, 26:5 (1999), 600–611

[2] Kulikovskii A.L., Pogorelov N.V., Semenov A.Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[3] Fracarollo L., Toro E.F., “Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems”, J. Hydraulic Research, 33:6 (1995), 843–864 | DOI

[4] Sanders B.F., “High resolution and non-oscillatory solution of St-Venant equations in non-rectangular and non-prismatic channel”, J. Hydraulic Research, 39:3 (2001), 321–330 | DOI

[5] Pinchukov V.I., Shu Ch.-V., Chislennye metody vysshikh poryadkov dlya zadach aerogidrodinamiki, izd-vo SO RAN, Novosibirsk, 2000

[6] Kochin N.E., Kibel I.A., Roze N.V., Teoreticheskaya gidromekhanika, v. 1, Fizmatgiz, M., 1963

[7] Voltsinger N.E., Pyaskovskii R.V., Teoriya melkoi vody. Okeanologicheskie zadachi i chislennye metody, Gidrometeoizdat, L., 1977

[8] Chugaev R.R., Gidravlika, Gosenergoizdat, M., 1963

[9] Karamyshev V.B., Monotonnye skhemy i ikh prilozheniya k gazovoi dinamike, NGU, Novosibirsk, 1994

[10] Shlychkov V.A., “Chislennoe issledovanie razresheniya neustoichivosti Kelvina–Gelmgoltsa v ruslovom potoke s poimoi”, Sibirs. zh. vychisl. matem., 10:4 (2007), 417–428

[11] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980

[12] Samarskii A.A., Gulin A.V., Chislennye metody, Nauka, M., 1989