Estimation of the remainder of a cubature formula on a Chebyshev grid for two-variable functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1185-1191 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a cubature formula of the form $$ \int_0^{2\pi}\int_0^{2\pi}f(x,y)\,dx\,dy=\frac{4\pi^2}{mn}\sum_{i=0}^{n-1}\sum_{j=0}^{m-1} f\biggl(\frac{2\pi i}{n},\frac{2\pi j}{m}\biggr)+R_{n,m}(f). $$ on a Chebyshev grid, the remainder $R_{n,m}(f)$ is proved to satisfy the sharp estimate $$ \sup_{f\in H(r_1,r_2)}|S_{n,m}(f)|=O(n^{-r_1+1}+m^{-r_1+1}) $$ in some class of functions $H(r_1,r_2)$ defined by a generalized shift operator. Here, $r_1,r_2>1$; $\lambda^{-1}\le n/m\le\lambda$ with $\lambda>0$ and the constant in the $O$-term depends only on $\lambda$.
@article{ZVMMF_2012_52_7_a1,
     author = {V. A. Abilov and M. K. Kerimov},
     title = {Estimation of the remainder of a cubature formula on a {Chebyshev} grid for two-variable functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1185--1191},
     year = {2012},
     volume = {52},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a1/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - M. K. Kerimov
TI  - Estimation of the remainder of a cubature formula on a Chebyshev grid for two-variable functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1185
EP  - 1191
VL  - 52
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a1/
LA  - ru
ID  - ZVMMF_2012_52_7_a1
ER  - 
%0 Journal Article
%A V. A. Abilov
%A M. K. Kerimov
%T Estimation of the remainder of a cubature formula on a Chebyshev grid for two-variable functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1185-1191
%V 52
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a1/
%G ru
%F ZVMMF_2012_52_7_a1
V. A. Abilov; M. K. Kerimov. Estimation of the remainder of a cubature formula on a Chebyshev grid for two-variable functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 7, pp. 1185-1191. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_7_a1/

[1] Davis R., Rabinowitz F., Methods of numerical integration, Sec. ed., Academic Press, New York, 1984 | MR | Zbl

[2] Krylov V.I., Approximate calculation of integrals, Macmillan, New York, 1962 ; Krylov V.K., Priblizhennoe vychislenie integralov, Nauka, M., 1967 | MR | Zbl | MR

[3] Krylov V.I., Shulgina L.T., Spravochnaya kniga po chislennomu integrirovaniyu, Nauka, M., 1956

[4] Mysovskii I.P., Integralnye kubaturnye formuly, Nauka, M., 1981

[5] Sobolev S.V., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974

[6] Stroud A.N., Approximate calculation of multiple integrals, Englewood Cliffs; Prentice Nall, New Jersey, 1971 | MR | Zbl

[7] Rivlin T., Chebyshev polynomials: from approximation theory to algebra and number theory., Sec. ed., John Wiley and Sons, New York, 1990 | MR | Zbl

[8] Van Deun J., Bultheel A., “A quadrature formula based on Chebyshev rational functions”, IMA J. of Numer. Anal., 26:4 (2006), 641–656 | DOI | MR | Zbl

[9] Byrd P.F., Stalla L., “Chebyshev quadrature rules for a new class of weight functions”, Math. of Comput., 42:163 (1984), 173–181 | DOI | MR | Zbl

[10] Eslahchi M.R., Dehghan M., Masjed-Jamei M., “On numerical improvement of the first kind Gauss–Chebyshev guadrature rules”, Appl. Math. and Comput., 165:1 (2005), 5–21 | DOI | MR | Zbl

[11] Golub G.H., Welsch J.H., “Calculation of Gauss quadrature rule”, Math. of Comput., 23 (1969), 221–230 | DOI | MR | Zbl

[12] Mysovskikh I.P., “Primenenie ortogonalnykh mnogochlenov k postroeniyu kubaturnykh formul”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 467–475 | MR | Zbl

[13] Franke R., “Minimal point cubatures of precision seven for symmetric planar regions”, SIAM. J. Numer. Anal., 10:5, 849–862 | DOI | MR | Zbl

[14] Schmid H.J., “On cubature formulae with a minimal number of knot”, Numer. Math., 31 (1978), 281–297 | DOI | MR | Zbl

[15] Ditkin V.A., “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhmernykh integralov”, Dokl. AN SSSR, 62 (1948), 445–447 | MR | Zbl

[16] Lyusternik L.A., “Nekotorye kubaturnye formuly dlya dvoinykh integralov”, Dokl. AN SSSR, 62:4 (1948), 449–452 | MR | Zbl

[17] Ivanova A.N., “Nekotorye sluchai kubaturnoi formuly L.A. Lyusternika dlya pravilnykh mnogougolnikov”, Vychisl. matem. i vychisl. tekhn., 1953, no. 1, 27–36 | MR

[18] Ermakov S.M., “Ob odnom sposobe postroeniya kubaturnykh formul”, Tr. Matem. in-ta AN SSSR, 53 (1959), 37–42 | Zbl

[19] Kuzmenkov V.A., “O suschestvovanii kubaturnykh formul s naimenshim vozmozhnym chislom uzlov”, Zh. vychisl. matem. i matem. fiz., 16:5 (1976), 1337–1339 | MR | Zbl

[20] Abilov V.A., Abilova F.V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $\mathbb L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl

[21] Abilov V.A., “On the convergence of Multiple Fourier Series and Quadruture Fofmulae”, Mathematica Balkanica. New Series, 16 (2002), 73–94 | MR | Zbl

[22] Abilov V.A., Kerimov M.K., “Ob otsenkakh ostatochnykh chlenov kratnykh ryadov Fure–Chebysheva i kubaturnykh formul chebyshevskogo tipa”, Zh. vychisl. matem. i matem. fiz., 43:5 (2003), 643–663 | MR | Zbl

[23] Abilov V.A., Abilova F.V., “Ob odnoi kvadraturnoi formule”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 451–458 | MR | Zbl