Mathematical simulation of an irregular waveguide with reentering edges
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1058-1062 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model is proposed to study an irregular waveguide with reentering edges. Theoretical estimates for the behavior of the solution near the reentrant corners are used to estimate the rate of convergence of the numerical solution to the exact one. The mode structure of the waveguide field is analyzed.
@article{ZVMMF_2012_52_6_a9,
     author = {A. N. Bogolyubov and A. I. Erokhin and I. E. Mogilevskii},
     title = {Mathematical simulation of an irregular waveguide with reentering edges},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1058--1062},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a9/}
}
TY  - JOUR
AU  - A. N. Bogolyubov
AU  - A. I. Erokhin
AU  - I. E. Mogilevskii
TI  - Mathematical simulation of an irregular waveguide with reentering edges
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1058
EP  - 1062
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a9/
LA  - ru
ID  - ZVMMF_2012_52_6_a9
ER  - 
%0 Journal Article
%A A. N. Bogolyubov
%A A. I. Erokhin
%A I. E. Mogilevskii
%T Mathematical simulation of an irregular waveguide with reentering edges
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1058-1062
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a9/
%G ru
%F ZVMMF_2012_52_6_a9
A. N. Bogolyubov; A. I. Erokhin; I. E. Mogilevskii. Mathematical simulation of an irregular waveguide with reentering edges. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1058-1062. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a9/

[1] Schiff B., Yosibash Z., “Eigenvalues for waveguides containing re-entrant corners by a finite-element method with superelements”, IEEE Transactions on microwave theory and techniques, 48:2 (2000), 214–220 | DOI | MR

[2] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[3] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[4] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[5] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, Uspekhi mat. nauk, 38:2 (1983), 3–76 | MR

[6] Bogolyubov A. N., Delitsyn A. L., Mogilevskii I. E., Sveshnikov A. G., “Osobennosti normalnykh voln neodnorodnogo volnovoda s vkhodyaschimi rebrami”, Radiotekhnika i elektronika, 48:7 (2003), 787–794 | MR

[7] Sveshnikov A. G., Mogilevskii I. E., Matematicheskie zadachi teorii difraktsii, Fizicheskii fakultet MGU, M., 2010