The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1042-1047 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial boundary value problem for a nonlinear singularly perturbed integro-parabolic equation is examined. An asymptotic expansion of the solution to this problem containing the temporal, spatial and corner boundary layers is constructed. The existence and local uniqueness of the solution is justified by using the asymptotic method of differential inequalities.
@article{ZVMMF_2012_52_6_a7,
     author = {N. N. Nefedov and A. G. Nikitin},
     title = {The initial boundary value problem for a nonlocal singularly perturbed reaction{\textendash}diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1042--1047},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a7/}
}
TY  - JOUR
AU  - N. N. Nefedov
AU  - A. G. Nikitin
TI  - The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1042
EP  - 1047
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a7/
LA  - ru
ID  - ZVMMF_2012_52_6_a7
ER  - 
%0 Journal Article
%A N. N. Nefedov
%A A. G. Nikitin
%T The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1042-1047
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a7/
%G ru
%F ZVMMF_2012_52_6_a7
N. N. Nefedov; A. G. Nikitin. The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1042-1047. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a7/

[1] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992 | MR

[2] Raquepas J., Dockery J., “Dynamics of a reaction-diffusion equation with nonlocal inhibition”, Physics D, 134 (1999), 94–110 | DOI | MR | Zbl

[3] Nefëdov N. N., Nikitin A. G., Urazgildina T. A., “Zadacha Koshi dlya integrodifferentsialnogo uravneniya Volterra”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 805–812 | MR

[4] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[5] Nefëdov N. N., Nikitin A. G., “Asimptoticheskii metod differentsialnykh neravenstv dlya singulyarno vozmuschennykh integrodifferentsialnykh uravnenii”, Differents. ur-niya, 36:10 (2000), 1398–1404 | MR | Zbl

[6] Nefëdov N. N., Nikitin A. G., “Razvitie asimptoticheskogo metoda differentsialnykh neravenstv dlya reshenii tipa stupenki v singulyarno vozmuschennykh integrodifferentsialnykh uravneniyakh”, Zh. vychisl. matem. i matem. fiz., 41:7 (2001), 1057–1066 | MR | Zbl

[7] Nefëdov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. ur-niya, 31:7 (1995), 1132–1139 | MR