@article{ZVMMF_2012_52_6_a6,
author = {G. I. Shishkin},
title = {Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection{\textendash}diffusion equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1010--1041},
year = {2012},
volume = {52},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a6/}
}
TY - JOUR AU - G. I. Shishkin TI - Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection–diffusion equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1010 EP - 1041 VL - 52 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a6/ LA - ru ID - ZVMMF_2012_52_6_a6 ER -
%0 Journal Article %A G. I. Shishkin %T Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection–diffusion equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1010-1041 %V 52 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a6/ %G ru %F ZVMMF_2012_52_6_a6
G. I. Shishkin. Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection–diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1010-1041. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a6/
[1] Shishkin G. I., “Aposteriorno adaptiruemye (po gradientu resheniya) setki v approksimatsii singulyarno vozmuschennykh uravnenii konvektsii-diffuzii”, Vychisl. tekhnologii, 6:1–2 (2001), 72–87 | MR | Zbl
[2] Shishkin G. I., “Approksimatsiya singulyarno vozmuschennykh uravnenii reaktsii-diffuzii na adaptivnykh setkakh”, Matem. modelirovanie, 13:3 (2001), 103–118 | MR | Zbl
[3] Shishkin G. I., Shishkina L. P., Hemker P. W., “A class of singularly perturbed convection-diffusion problems with a moving interior layer. A Posteriori Adaptive Mesh Technique”, Comp. Meth. Appl. Math., 4:1 (2004), 105–127 | MR | Zbl
[4] Shishkin G. I., “Ispolzovanie reshenii na vlozhennykh setkakh pri approksimatsii singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii na adaptiruyuschikh setkakh”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1617–1637 | MR
[5] Shishkin G. I., “A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation”, Numer. Math. Theor. Meth. Appl., 1:2 (2008), 214–234 | MR | Zbl
[6] Shishkin G. I., “Raznostnaya skhema povyshennoi tochnosti na apriorno adaptiruyuschikhsya setkakh dlya singulyarno vozmuschennogo parabolicheskogo uravneniya konvektsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 51:10 (2011), 1816–1839 | MR | Zbl
[7] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[8] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996 | MR
[9] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust Computational Techniques for Boundary Layers, Applied Mathematics, 16, Chapman and Hall/CRC Press, 2000 | MR | Zbl
[10] Roos H.-G., Stynes M., Tobiska L., Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 2008 | MR | Zbl
[11] Shishkin G. I., Shishkina L. P., Difference Methods for Singular Perturbation Problems, Ser. Monographs and Surveys in Pure and Applied Math., Chapman and Hall/CRC, 2009 | MR | Zbl
[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[13] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl
[14] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001