@article{ZVMMF_2012_52_6_a5,
author = {P. N. Vabishchevich},
title = {SM-stability of operator-difference schemes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1002--1009},
year = {2012},
volume = {52},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a5/}
}
P. N. Vabishchevich. SM-stability of operator-difference schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1002-1009. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a5/
[1] Vabischevich P. N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 118–130 | MR
[2] Baker G. A., Graves-Morris P., Padé approximants, U. P., Cambridge, 1996 | MR
[3] Vabischevich P. N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach s kososimmetrichnymi operatorami”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1121–1132 | MR
[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[5] Yanenko N. N., The method of fractional steps. The solution of problems of mathematical physics in several variables, Springer Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl
[6] Marckhuk G. I., “Splitting and alternating direction methods”, Handbook of numerical analysis, 1, North-Holland, 1990, 197–462 | DOI | MR
[7] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Ind. Appl. Math., 3 (1955), 28–41 | DOI | MR | Zbl
[8] Douglas J., Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Am. Math. Soc., 82 (1956), 421–439 | DOI | MR | Zbl
[9] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR
[10] Strang G., “Accurate partial difference methods. I: Linear Cauchy problems”, Archive for rational mechanics and analysis, 12 (1963), 392–402 | DOI | MR | Zbl
[11] Strang G., “On the construction and comparison of difference schemes”, SIAM J. Numer. Anal., 5 (1968), 506–517 | DOI | MR | Zbl
[12] Fryazinov I. V., “Ekonomichnye simmetrizovannye skhemy resheniya kraevykh zadach dlya mnogomernogo uravneniya parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 8:2 (1968), 436–443
[13] Sheng Q., “Solving linear partial differential equations by exponential splitting”, IMA J. Numer. Anal., 9 (1989), 199–212 | DOI | MR | Zbl
[14] Suzuki M., “General theory of fractal path integrals with applications to many-body theories and statistical physics”, J. Math. Phys., 32 (1991), 400–407 | DOI | MR | Zbl
[15] Sussman G. J., Wisdom J., “Chaotic evolution of the Solar system”, Science, 257 (1992), 56–62 | DOI | MR | Zbl
[16] Goldman D., Kaper T. J., “Nth-order operator splitting schemes and nonreversible systems”, SIAM J. Numer. Anal., 33 (1996), 349–367 | DOI | MR | Zbl
[17] Blanes S., Casas F., “On the necessity of negative coefficients for operator splitting schemes of order higher than two”, Appl. Numer. Math., 54 (2005), 23–37 | DOI | MR | Zbl
[18] Schatzman M., “Numerical integration of reaction-diffusion systems”, Numer. Algorithms, 31 (2002), 247–269 | DOI | MR | Zbl
[19] Gegechkori Z. G., Rogava J. L., Tsiklauri M. A., “High degree precision decomposition method for the evolution problem with an operator under a split form”, ESAIM: Math. Model. Numer. Anal., 36 (2002), 693–704 | DOI | MR | Zbl
[20] Bandrauk A., Dehghanian E., Lu H., “Complex integration steps in decomposition of quantum exponential evolution operators”, Chem. Phys. Lett., 419 (2006), 346–350 | DOI
[21] Castella F., Chartier P., Descombes S., Vilmart G., “Splitting methods with complex times for parabolic equations”, BIT Numer. Math., 49 (2009), 487–508 | DOI | MR | Zbl