SM-stability of operator-difference schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1002-1009 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spectral mimetic (SM) properties of operator-difference schemes for solving the Cauchy problem for first-order evolutionary equations concern the time evolution of individual harmonics of the solution. Keeping track of the spectral characteristics makes it possible to select more appropriate approximations with respect to time. Among two-level implicit schemes of improved accuracy based on Padй approximations, SM-stability holds for schemes based on polynomial approximations if the operator in an evolutionary equation is self-adjoint and for symmetric schemes if the operator is skew-symmetric. In this paper, additive schemes (also called splitting schemes) are constructed for evolutionary equations with general operators. These schemes are based on the extraction of the self-adjoint and skew-symmetric components of the corresponding operator.
@article{ZVMMF_2012_52_6_a5,
     author = {P. N. Vabishchevich},
     title = {SM-stability of operator-difference schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1002--1009},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a5/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - SM-stability of operator-difference schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1002
EP  - 1009
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a5/
LA  - ru
ID  - ZVMMF_2012_52_6_a5
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T SM-stability of operator-difference schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1002-1009
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a5/
%G ru
%F ZVMMF_2012_52_6_a5
P. N. Vabishchevich. SM-stability of operator-difference schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1002-1009. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a5/

[1] Vabischevich P. N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 118–130 | MR

[2] Baker G. A., Graves-Morris P., Padé approximants, U. P., Cambridge, 1996 | MR

[3] Vabischevich P. N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach s kososimmetrichnymi operatorami”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1121–1132 | MR

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[5] Yanenko N. N., The method of fractional steps. The solution of problems of mathematical physics in several variables, Springer Verlag, Berlin–Heidelberg–New York, 1971 | MR | Zbl

[6] Marckhuk G. I., “Splitting and alternating direction methods”, Handbook of numerical analysis, 1, North-Holland, 1990, 197–462 | DOI | MR

[7] Peaceman D. W., Rachford H. H., “The numerical solution of parabolic and elliptic differential equations”, J. Soc. Ind. Appl. Math., 3 (1955), 28–41 | DOI | MR | Zbl

[8] Douglas J., Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Am. Math. Soc., 82 (1956), 421–439 | DOI | MR | Zbl

[9] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 1999 | MR

[10] Strang G., “Accurate partial difference methods. I: Linear Cauchy problems”, Archive for rational mechanics and analysis, 12 (1963), 392–402 | DOI | MR | Zbl

[11] Strang G., “On the construction and comparison of difference schemes”, SIAM J. Numer. Anal., 5 (1968), 506–517 | DOI | MR | Zbl

[12] Fryazinov I. V., “Ekonomichnye simmetrizovannye skhemy resheniya kraevykh zadach dlya mnogomernogo uravneniya parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 8:2 (1968), 436–443

[13] Sheng Q., “Solving linear partial differential equations by exponential splitting”, IMA J. Numer. Anal., 9 (1989), 199–212 | DOI | MR | Zbl

[14] Suzuki M., “General theory of fractal path integrals with applications to many-body theories and statistical physics”, J. Math. Phys., 32 (1991), 400–407 | DOI | MR | Zbl

[15] Sussman G. J., Wisdom J., “Chaotic evolution of the Solar system”, Science, 257 (1992), 56–62 | DOI | MR | Zbl

[16] Goldman D., Kaper T. J., “Nth-order operator splitting schemes and nonreversible systems”, SIAM J. Numer. Anal., 33 (1996), 349–367 | DOI | MR | Zbl

[17] Blanes S., Casas F., “On the necessity of negative coefficients for operator splitting schemes of order higher than two”, Appl. Numer. Math., 54 (2005), 23–37 | DOI | MR | Zbl

[18] Schatzman M., “Numerical integration of reaction-diffusion systems”, Numer. Algorithms, 31 (2002), 247–269 | DOI | MR | Zbl

[19] Gegechkori Z. G., Rogava J. L., Tsiklauri M. A., “High degree precision decomposition method for the evolution problem with an operator under a split form”, ESAIM: Math. Model. Numer. Anal., 36 (2002), 693–704 | DOI | MR | Zbl

[20] Bandrauk A., Dehghanian E., Lu H., “Complex integration steps in decomposition of quantum exponential evolution operators”, Chem. Phys. Lett., 419 (2006), 346–350 | DOI

[21] Castella F., Chartier P., Descombes S., Vilmart G., “Splitting methods with complex times for parabolic equations”, BIT Numer. Math., 49 (2009), 487–508 | DOI | MR | Zbl