A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a homogeneous scheme with 26-point averaging operator for the solution of Dirichlet problem for Laplace’s equation on rectangular parallelepiped is analyzed. It is proved that the order of convergence is $O(h^4)$, where $h$ is the mesh step, when the boundary functions are from $C^{3,1}$, and the compatibility condition, which results from the Laplace equation, for the second order derivatives on the adjacent faces is satisfied on the edges. Futhermore, it is proved that the order of convergence is $O(h^6(|{\ln h}|+1))$, when the boundary functions are from $C^{5,1}$, and the compatibility condition for the fourth order derivatives is satisfied. These estimations can be used to justify different versions of domain decomposition methods.
@article{ZVMMF_2012_52_6_a4,
     author = {E. A. Volkov and A. A. Dosiev},
     title = {A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1001},
     year = {2012},
     volume = {52},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/}
}
TY  - JOUR
AU  - E. A. Volkov
AU  - A. A. Dosiev
TI  - A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1001
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/
LA  - en
ID  - ZVMMF_2012_52_6_a4
ER  - 
%0 Journal Article
%A E. A. Volkov
%A A. A. Dosiev
%T A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1001
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/
%G en
%F ZVMMF_2012_52_6_a4
E. A. Volkov; A. A. Dosiev. A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/

[1] N. S. Bakhvalov, “Numerical Solution to the Dirichlet Problem for the Laplace Equation”, Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh. Astr. Fiz. Khim., 1959, no. 5, 171–195 | MR

[2] E. A. Volkov, “On Differential Properties of Solutions of the Laplace and Poisson Equations on a Parallelepiped and Efficient Error Estimates of the Method of Nets”, Proc. Steklov Inst. Math., 105, 1969, 54–78 | MR

[3] E. A. Volkov, “Weighted Error Estimates for the Mesh Method of Solving the Laplace and Poisson Equations”, Proc. Steklov Inst. Math., 117, 1972, 119–134 | MR

[4] E. A. Volkov, “On the Grid Method for Approximating the Derivatives of the Solution of the Dirichlet Problem on a Rectangular Parallelepiped”, Russ. J. Numer. Anal. Math. Model., 19:3 (2004), 269–278 | DOI | MR | Zbl

[5] E. A. Volkov, “On a Combined Grid Method for Solving the Dirichlet Problem for the Laplace Equation in a Rectangular Parallelepiped”, Comput. Math. Math. Phys., 47 (2007), 638–643 | DOI | MR | Zbl

[6] E. A. Volkov, “Modified Combined Grid Method for Solving the Dirichlet Problem for the Laplace Equation on a Rectangular Parallelepiped”, Comput. Math. Math. Phys., 50 (2010), 274–284 | DOI | MR | Zbl

[7] E. A. Volkov, “Application of a 14-Point Averaging Operator in the Grid Method”, Comput. Math. Math. Phys., 50 (2010), 2023–2032 | DOI | MR | Zbl

[8] E. A. Volkov, “On the Smoothness of Solutions of the Dirichlet Problem and the Composite Mesh Method on Polyhedra”, Proc. Steklov Inst. Math., 150 (1979), 71–103 | MR

[9] E. A. Volkov, “A Method of Composite Grids on a Prism with an Arbitrary Polygonal Base”, Proc. Steklov Inst. Math., 243, 2003, 131–153 | MR | Zbl

[10] E. A. Volkov, “The Differential Properties of the Solutions of Laplace's Equation, and the Errors in the Method of Nets with Boundary Values in $C_2$ and $C_{1,1}$”, USSR Comput. Math. Math. Phys., 9:3 (1969), 97–112 | DOI | MR

[11] A. A. Dosiyev, “New Properties of 9-Point Finite Difference Solution of the Laplace Equation”, Mediterr. J. Math., 8 (2011), 451–462 | DOI | MR | Zbl

[12] V. P. Mikhailov, Partial Differential Equations, Mir, Moscow, 1978 | MR

[13] Sh. E. Mikeladze, “On the Numerical Solution of Laplace's and Poisson's Differential Equations”, Izv. Acad. Nauk SSSR, Ser. Mat., 1938, no. 2, 271–292

[14] A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, 2001 | MR | Zbl