@article{ZVMMF_2012_52_6_a4,
author = {E. A. Volkov and A. A. Dosiev},
title = {A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1001},
year = {2012},
volume = {52},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/}
}
TY - JOUR
AU - E. A. Volkov
AU - A. A. Dosiev
TI - A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2012
SP - 1001
VL - 52
IS - 6
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/
LA - en
ID - ZVMMF_2012_52_6_a4
ER -
%0 Journal Article
%A E. A. Volkov
%A A. A. Dosiev
%T A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1001
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/
%G en
%F ZVMMF_2012_52_6_a4
E. A. Volkov; A. A. Dosiev. A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a4/
[1] N. S. Bakhvalov, “Numerical Solution to the Dirichlet Problem for the Laplace Equation”, Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh. Astr. Fiz. Khim., 1959, no. 5, 171–195 | MR
[2] E. A. Volkov, “On Differential Properties of Solutions of the Laplace and Poisson Equations on a Parallelepiped and Efficient Error Estimates of the Method of Nets”, Proc. Steklov Inst. Math., 105, 1969, 54–78 | MR
[3] E. A. Volkov, “Weighted Error Estimates for the Mesh Method of Solving the Laplace and Poisson Equations”, Proc. Steklov Inst. Math., 117, 1972, 119–134 | MR
[4] E. A. Volkov, “On the Grid Method for Approximating the Derivatives of the Solution of the Dirichlet Problem on a Rectangular Parallelepiped”, Russ. J. Numer. Anal. Math. Model., 19:3 (2004), 269–278 | DOI | MR | Zbl
[5] E. A. Volkov, “On a Combined Grid Method for Solving the Dirichlet Problem for the Laplace Equation in a Rectangular Parallelepiped”, Comput. Math. Math. Phys., 47 (2007), 638–643 | DOI | MR | Zbl
[6] E. A. Volkov, “Modified Combined Grid Method for Solving the Dirichlet Problem for the Laplace Equation on a Rectangular Parallelepiped”, Comput. Math. Math. Phys., 50 (2010), 274–284 | DOI | MR | Zbl
[7] E. A. Volkov, “Application of a 14-Point Averaging Operator in the Grid Method”, Comput. Math. Math. Phys., 50 (2010), 2023–2032 | DOI | MR | Zbl
[8] E. A. Volkov, “On the Smoothness of Solutions of the Dirichlet Problem and the Composite Mesh Method on Polyhedra”, Proc. Steklov Inst. Math., 150 (1979), 71–103 | MR
[9] E. A. Volkov, “A Method of Composite Grids on a Prism with an Arbitrary Polygonal Base”, Proc. Steklov Inst. Math., 243, 2003, 131–153 | MR | Zbl
[10] E. A. Volkov, “The Differential Properties of the Solutions of Laplace's Equation, and the Errors in the Method of Nets with Boundary Values in $C_2$ and $C_{1,1}$”, USSR Comput. Math. Math. Phys., 9:3 (1969), 97–112 | DOI | MR
[11] A. A. Dosiyev, “New Properties of 9-Point Finite Difference Solution of the Laplace Equation”, Mediterr. J. Math., 8 (2011), 451–462 | DOI | MR | Zbl
[12] V. P. Mikhailov, Partial Differential Equations, Mir, Moscow, 1978 | MR
[13] Sh. E. Mikeladze, “On the Numerical Solution of Laplace's and Poisson's Differential Equations”, Izv. Acad. Nauk SSSR, Ser. Mat., 1938, no. 2, 271–292
[14] A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, 2001 | MR | Zbl