Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 990-998 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of two-phase methods for approximating the Edgeworth–Pareto hull (EPH) in nonlinear multicriteria optimization problems is analyzed. The methods are based on the iterative supplement of the finite set of feasible criteria vectors (approximation basis) whose EPH approximates the desired set. A feature of two-phase methods is that the criteria images of randomly generated points of the decision space approach the Pareto frontier via local optimization of adaptively chosen convolutions of criteria. The convergence of two-phase methods is proved for both an abstract form of the algorithm and for a two-phase method based on the Germeier convolution.
@article{ZVMMF_2012_52_6_a2,
     author = {V. E. Berezkin and G. K. Kamenev},
     title = {Convergence analysis of two-phase methods for approximating the {Edgeworth{\textendash}Pareto} hull in nonlinear multicriteria optimization problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {990--998},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/}
}
TY  - JOUR
AU  - V. E. Berezkin
AU  - G. K. Kamenev
TI  - Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 990
EP  - 998
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/
LA  - ru
ID  - ZVMMF_2012_52_6_a2
ER  - 
%0 Journal Article
%A V. E. Berezkin
%A G. K. Kamenev
%T Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 990-998
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/
%G ru
%F ZVMMF_2012_52_6_a2
V. E. Berezkin; G. K. Kamenev. Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 990-998. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/

[1] Krasnoschekov P. S., Morozov V. V., Fedorov V. V., “Dekompozitsiya v zadachakh proektirovaniya”, Izvestiya AN. Seriya Tekhn. Kibernetiki, 1979, no. 2, 7–17

[2] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29 | MR | Zbl

[3] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992 | MR

[4] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[5] Miettinen K., Nonlinear multiobjective optimization, Kluwer, Boston, 1999 | MR

[6] Lotov A., Bushenkov V., Kamenev G., Feasible goals method. Search for smart decisions, VTs RAN, M., 2001

[7] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Appl. Optimizat., 89, Kluwer Academic Publishers, New York, 2004 | MR | Zbl

[8] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, Maks Press, M., 2008

[9] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR

[10] Lotov A. V., Kamenev G. K., Berezkin V. E., “Approksimatsiya i vizualizatsiya Paretovoi granitsy dlya nevypuklykh mnogokriterialnykh zadach”, Dokl. RAN, 386:6 (2002), 738–741 | MR | Zbl

[11] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023 | MR

[12] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118 | MR | Zbl

[13] Berezkin V. E., Metody approksimatsii granitsy Pareto v nelineinykh zadachakh mnogokriterialnoi optimizatsii, Dis. ...kand. fiz.-matem. nauk, VTs RAN, M., 2008

[14] Kamenev G. K., “Issledovanie adaptivnogo odnofaznogo metoda approksimatsii mnogomernoi granitsy Pareto v nelineinykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2103–2113 | MR

[15] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom Glubokikh Yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl

[16] Germeier Yu. B., Issledovanie operatsii, Nauka, M., 1970

[17] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl