@article{ZVMMF_2012_52_6_a2,
author = {V. E. Berezkin and G. K. Kamenev},
title = {Convergence analysis of two-phase methods for approximating the {Edgeworth{\textendash}Pareto} hull in nonlinear multicriteria optimization problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {990--998},
year = {2012},
volume = {52},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/}
}
TY - JOUR AU - V. E. Berezkin AU - G. K. Kamenev TI - Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 990 EP - 998 VL - 52 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/ LA - ru ID - ZVMMF_2012_52_6_a2 ER -
%0 Journal Article %A V. E. Berezkin %A G. K. Kamenev %T Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 990-998 %V 52 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/ %G ru %F ZVMMF_2012_52_6_a2
V. E. Berezkin; G. K. Kamenev. Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 990-998. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a2/
[1] Krasnoschekov P. S., Morozov V. V., Fedorov V. V., “Dekompozitsiya v zadachakh proektirovaniya”, Izvestiya AN. Seriya Tekhn. Kibernetiki, 1979, no. 2, 7–17
[2] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29 | MR | Zbl
[3] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992 | MR
[4] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[5] Miettinen K., Nonlinear multiobjective optimization, Kluwer, Boston, 1999 | MR
[6] Lotov A., Bushenkov V., Kamenev G., Feasible goals method. Search for smart decisions, VTs RAN, M., 2001
[7] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Appl. Optimizat., 89, Kluwer Academic Publishers, New York, 2004 | MR | Zbl
[8] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, Maks Press, M., 2008
[9] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR
[10] Lotov A. V., Kamenev G. K., Berezkin V. E., “Approksimatsiya i vizualizatsiya Paretovoi granitsy dlya nevypuklykh mnogokriterialnykh zadach”, Dokl. RAN, 386:6 (2002), 738–741 | MR | Zbl
[11] Berezkin V. E., Kamenev G. K., Lotov A. V., “Gibridnye adaptivnye metody approksimatsii nevypukloi mnogomernoi paretovoi granitsy”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2009–2023 | MR
[12] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118 | MR | Zbl
[13] Berezkin V. E., Metody approksimatsii granitsy Pareto v nelineinykh zadachakh mnogokriterialnoi optimizatsii, Dis. ...kand. fiz.-matem. nauk, VTs RAN, M., 2008
[14] Kamenev G. K., “Issledovanie adaptivnogo odnofaznogo metoda approksimatsii mnogomernoi granitsy Pareto v nelineinykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 49:12 (2009), 2103–2113 | MR
[15] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom Glubokikh Yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl
[16] Germeier Yu. B., Issledovanie operatsii, Nauka, M., 1970
[17] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl