@article{ZVMMF_2012_52_6_a15,
author = {M. S. Elaeva},
title = {Separation of a two-component mixture in electric field},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1143--1159},
year = {2012},
volume = {52},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a15/}
}
M. S. Elaeva. Separation of a two-component mixture in electric field. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1143-1159. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a15/
[1] Babskii V. G., Zhukov M. Yu., Yudovich V. I., Matematicheskaya teoriya elektroforeza: Primenenie k metodam fraktsionirovaniya biopolimerov, Naukova dumka, Kiev, 1983
[2] Mosher R. A., Saville D. A., Thorman W., The Dynamics of Electrophoresis, VCH Publishers, New York, 1992
[3] Zhukov M. Yu., Massoperenos elektricheskim polem, Izd-vo Rostovskogo un-ta, Rostov-na-Donu, 2005
[4] Moore G. T., “Theory of isotachophoresis. Development of concentration boundaries”, J. Chromatography, 106:1 (1975), 1–16 | DOI
[5] Alekseevskaya T. V., “Issledovanie kvazilineinykh uravnenii, voznikayuschikh v zadachakh elektroforeza”, Funkts. analiz, 17:3 (1983), 63–65 | MR
[6] Zhukov M. Yu., Yudovich V. I., “Matematicheskaya model izotakhoforeza”, Dokl. AN SSSR, 267:2 (1982), 334–338
[7] Zhukov M. Yu., “Nestatsionarnaya model izotakhoforeza”, Zh. vychisl. matem. i matem. fiz., 24:4 (1984), 549–565 | MR
[8] Zhukov M. Yu., “Uravnenie perenosa mass dlya silno kontsentrirovannykh mnogokomponentnykh smesei pri nalichii elektricheskogo polya. Model izotakhoforeza”, Matem. modelirovanie, 7:4 (1995), 19–28 | MR | Zbl
[9] Konstantinov B. P., Oshurkova O. V., “Ekspressnyi mikroanaliz khimicheskikh elementov metodom dvizhuscheisya granitsy”, Dokl. AN SSSR, 148:5 (1963), 1110–1113
[10] Kuznetsov N. N., “Nekotorye matematicheskie voprosy khromatografii”, Vychisl. metody i programmir., 1967, no. 6, 242–258
[11] Pavlov M. V., Gamiltonov formalizm uravnenii elektroforeza. Integriruemye uravneniya gidrodinamiki, Prepr. ITF im. L. D. Landau, No 17, M., 1987
[12] Bello M. S., Zhukov M. Yu., Righetti P. G., “Combined effects on non-linear electrophoresis and non-linear chromatography on concentration profiles in capillary electrophoresis”, J. Chromatography A, 693 (1995), 113–130 | DOI
[13] Haglund H., “Isotachophoresis”, Sci. Tools, 17:1 (1970), 2–13
[14] Righetti P. G., Immobilized pH gradient: theory and methodology, Laboratory techniques in biochemistry and molecular biology, Elsevier Biomedical Press, Amsterdam–New York–Oxford, 1990
[15] Ferapontov E. V., Tsarev S. P., “Sistemy gidrodinamicheskogo tipa, voznikayuschie v gazovoi khromatografii. Invarianty Rimana i tochnye resheniya”, Matem. modelirovanie, 3:2 (1991), 82–91 | MR | Zbl
[16] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1067
[17] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[18] Lax P. D., “Hyperbolic systems of conservation law, II”, Comm. Pure Appl. Math., 1957, no. 10, 537–566 | DOI | MR | Zbl