Control of the transition between regular and mach reflection of shock waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1134-1142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A control problem was considered that makes it possible to switch the flow between stationary Mach and regular reflection of shock waves within the dual solution domain. The sensitivity of the flow was computed by solving adjoint equations. A control disturbance was sought by applying gradient optimization methods. According to the computational results, the transition from regular to Mach reflection can be executed by raising the temperature. The transition from Mach to regular reflection can be achieved by lowering the temperature at moderate Mach numbers and is impossible at large numbers. The reliability of the numerical results was confirmed by verifying them with the help of a posteriori analysis.
@article{ZVMMF_2012_52_6_a14,
     author = {A. K. Alekseev},
     title = {Control of the transition between regular and mach reflection of shock waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1134--1142},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a14/}
}
TY  - JOUR
AU  - A. K. Alekseev
TI  - Control of the transition between regular and mach reflection of shock waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1134
EP  - 1142
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a14/
LA  - ru
ID  - ZVMMF_2012_52_6_a14
ER  - 
%0 Journal Article
%A A. K. Alekseev
%T Control of the transition between regular and mach reflection of shock waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1134-1142
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a14/
%G ru
%F ZVMMF_2012_52_6_a14
A. K. Alekseev. Control of the transition between regular and mach reflection of shock waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1134-1142. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a14/

[1] Ivanov M. S., Ben-Dor G., Elperin T. et al., “The reflection of asymmetric shock waves in steady flows: a numerical investigation”, J. Fluid Mech., 469 (2002), 71–87 | DOI | MR | Zbl

[2] Ivanov M. S., Vandromme D., Fomin V. M. et al., “Transition between regular and Mach reflection of shock waves: new numerical and experimental results”, Shock Waves, 11 (2001), 199–207 | DOI | Zbl

[3] Kudryavtsev A. N., Khotyanovsky D. V., Ivanov M. S. et al., “Numerical investigations of transition between regular and Mach reflections caused by free-stream disturbances”, Shock Waves, 12 (2002), 157–165 | DOI | Zbl

[4] Yan H., Adelgren R., Elliott G. et al., Laser Energy Deposition in Intersecting Shocks, AIAA 2002–2729, 10 pp.

[5] Yan H., Adelgren R., Elliott G. et al., “Effect of energy addition on MR\$RR transition”, Shock Waves, 13:2 (2003), 113–121 | DOI

[6] Khotyanovsky D. V., Kudryavtsev A. N., Ivanov M. S., “Effects of a single-pulse energy deposition on steady shock wave reflection”, Shock Waves, 15 (2006), 353–362 | DOI

[7] Mouton C. A., Hornung H. G., “Experiments on the mechanism of inducing transition between regular and Mach reflection”, Phys. Fluids, 20 (2008), 126103:1–11 | DOI | Zbl

[8] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR

[9] Nadarajah S. K., Jameson A., Alonso J., An adjoint method for the calculation of remote sensitivities in supersonic flow, AIAA–2002–0261, 11 pp.

[10] Alekseev A. K., Navon I. M., “Estimation of goal functional error arising from iterative solution of Euler equations”, Int. J. of Comput. Fluid Dyn., 22:4 (2008), 221–228 | DOI | MR | Zbl

[11] van Leer B., “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR

[12] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2006, 724 pp. | MR

[13] Sun M., Katayama K., “An artifically upstream flux vector splitting for the Euler equations”, JCP, 189 (2003), 305–329 | MR | Zbl

[14] Yamamoto S., Daiguji H., “Higher-order-accurate upwind schemes for solving the compressible Euler and Navier–Stokes equations”, Computers and Fluids, 22 (1993), 259–270 | DOI | MR | Zbl

[15] Alekseev A. K., Zhurin S. V., “O postprotsessore dlya aposteriornoi otsenki pogreshnosti rascheta parametrov techeniya”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1703–1708 | MR

[16] Carpenter M. H., Casper J. H., “Accuracy of shock capturing in two spatial dimensions”, AIAA J., 37:9 (1999), 1072–1079 | DOI

[17] Gallouet T., Herard J.-M., Seguin N., “Some recent finite volume schemes to compute Euler equations using real gas”, EOS, 39:12 (2002), 1073–1138 | MR | Zbl

[18] Toro E., Siviglia A., “PRICE: Primitive centred schemes for hyperbolic system of equations”, Int. Journal for Numerical Methods in Fluids, 42 (2003), 1263–1291 | DOI | MR | Zbl

[19] Surzhikov S. T., Shang J. S., Plasmadynamics of glow discharge in hypersonic internal flows, AIAA 2007–0994, Reno NV, January 2007

[20] Knight D. D., Kolesnichenko Y. F., Brovkin V., Khmara D., “High speed flow control using microwave energy deposition”, 16th Australasian Fluid Mechanics Conference (Crown Plaza, Gold Coast, Australia, 2–7 December 2007)