Numerical study of spherical Couette flows for certain zenith-angle-dependent rotations of boundary spheres at low Reynolds numbers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1095-1133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical method with splitting of boundary conditions developed previously by the first and third authors for solving the stationary Dirichlet boundary value problem for the Navier–Stokes equations in spherical layers in the axisymmetric case at low Reynolds numbers and a corresponding software package were used to study viscous incompressible steady flows between two con-centric spheres. Flow regimes depending on the zenith angle $\theta$ of coaxially rotating boundary spheres (admitting discontinuities in their angular velocities) were investigated. The orders of accuracy with respect to the mesh size of the numerical solutions (for velocity, pressure, and stream function in a meridional plane) in the max and $L_2$ norms were studied in the case when the velocity boundary data have jump discontinuities and when some procedures are used to smooth the latter. The capabilities of the Richardson extrapolation procedure used to improve the order of accuracy of the method were investigated. Error estimates were obtained. Due to the high accuracy of the numerical solutions, flow features were carefully analyzed that were not studied previously. A number of interesting phenomena in viscous incompressible flows were discovered in the cases under study.
@article{ZVMMF_2012_52_6_a13,
     author = {B. V. Pal'tsev and M. B. Solov'ev and I. I. Chechel'},
     title = {Numerical study of spherical {Couette} flows for certain zenith-angle-dependent rotations of boundary spheres at low {Reynolds} numbers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1095--1133},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a13/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
AU  - M. B. Solov'ev
AU  - I. I. Chechel'
TI  - Numerical study of spherical Couette flows for certain zenith-angle-dependent rotations of boundary spheres at low Reynolds numbers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1095
EP  - 1133
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a13/
LA  - ru
ID  - ZVMMF_2012_52_6_a13
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%A M. B. Solov'ev
%A I. I. Chechel'
%T Numerical study of spherical Couette flows for certain zenith-angle-dependent rotations of boundary spheres at low Reynolds numbers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1095-1133
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a13/
%G ru
%F ZVMMF_2012_52_6_a13
B. V. Pal'tsev; M. B. Solov'ev; I. I. Chechel'. Numerical study of spherical Couette flows for certain zenith-angle-dependent rotations of boundary spheres at low Reynolds numbers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1095-1133. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a13/

[1] Paltsev B. V., Chechel I. I., “O metode 2-go poryadka tochnosti s rasschepleniem granichnykh uslovii resheniya statsionarnoi osesimmetrichnoi zadachi Nave–Stoksa v sharovykh sloyakh”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2232–2250 | MR

[2] Paltsev B. V., Stavtsev A. V., Chechel I. I., “Chislennoe issledovanie osnovnykh statsionarnykh sfericheskikh techenii Kuetta pri nebolshikh chislakh Reinoldsa”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 693–716 | MR

[3] Paltsev B. V., Chechel I. I., “Konechno-elementnye realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe, obespechivayuschie 2-i poryadok tochnosti vplot do osi simmetrii”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 846–889 | MR

[4] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v share i sharovom sloe”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 935–963 | MR

[5] Paltsev B. V., “Optimizatsiya znachenii relaksatsionnykh parametrov odnoshagovogo varianta iteratsionnogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe”, Vestn. RUDN, 8:2 (2001), 74–90

[6] Paltsev B. V., Chechel I. I., “O skorosti skhodimosti i optimizatsii chislennogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe v osesimmetrichnom sluchae. Modifikatsiya dlya tolstykh sloev”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 858–886 | MR

[7] Meller N. A., Paltsev B. V., Khlyupina E. G., “O konechno-elementnykh realizatsiyakh iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe. Osesimmetrichnyi sluchai”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 98–123 | MR | Zbl

[8] Paltsev B. V., Chechel I. I., “O konechno-elementnykh tipa lineinykh, vtorogo poryadka tochnosti vplot do polyusov, approksimatsiyakh operatorov Laplasa–Beltrami, gradienta i divergentsii na sfere v $\mathbb{R}^3$ v osesimmetrichnom sluchae”, Dokl. RAN, 395:3 (2004), 308–315 | MR

[9] Belyaev Yu. N., Yavorskaya I. M., “Techeniya vyazkoi zhidkosti vo vraschayuschikhsya sharovykh sloyakh i ikh ustoichivost”, Itogi nauki i tekhn. Ser. MZhG, 15, VINITI, M., 1980, 3–80

[10] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. II, Fizmatlit, M., 1960 | MR