Nonconformal finite element method for a fluid dynamics problem with a curved interface
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1072-1094 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2012_52_6_a12,
     author = {A. V. Rukavishnikov},
     title = {Nonconformal finite element method for a fluid dynamics problem with a curved interface},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1072--1094},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a12/}
}
TY  - JOUR
AU  - A. V. Rukavishnikov
TI  - Nonconformal finite element method for a fluid dynamics problem with a curved interface
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1072
EP  - 1094
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a12/
LA  - ru
ID  - ZVMMF_2012_52_6_a12
ER  - 
%0 Journal Article
%A A. V. Rukavishnikov
%T Nonconformal finite element method for a fluid dynamics problem with a curved interface
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1072-1094
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a12/
%G ru
%F ZVMMF_2012_52_6_a12
A. V. Rukavishnikov. Nonconformal finite element method for a fluid dynamics problem with a curved interface. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1072-1094. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a12/

[1] Rukavishnikov A. V., “Obobschennaya postanovka zadachi techeniya dvukhfaznoi zhidkosti s nepreryvno izmenyayuschimsya interfeisom”, Matem. modelirovanie, 20:3 (2008), 3–8 | MR

[2] Bernardi C., Maday Y., Patera A., “A New nonconforming approach to domain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and their Applications, Pitman, Paris, 1994, 13–51 | MR | Zbl

[3] Flemisch B., Melenk J. M., Wohlmuth B., “Mortar methods with curved interfaces”, Appl. Numer. Math., 54 (2005), 339–361 | DOI | MR | Zbl

[4] Huang J., Zou J., “A mortar element method for elliptic problems with discontinnous coefficients”, IMA Jour. of Numer. Anal., 22 (2002), 549–576 | DOI | MR | Zbl

[5] Ben Belgacem F., “The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis”, SIAM J. Numer. Anal., 37:4 (2000), 1085–1100 | DOI | MR | Zbl

[6] Rukavishnikov A. V., Rukavishnikov V. A., “Nekonformnyi metod konechnykh elementov dlya zadachi Stoksa s razryvnym koeffitsientom”, Sib. zhurnal industr. matem., 10:4 (2007), 104–117 | MR | Zbl

[7] Rukavishnikov A. V., “O postroenii chislennogo metoda dlya zadachi Stoksa s razryvnym koeffitsientom vyazkosti”, Vychisl. tekhnologii, 14:2 (2009), 110–123 | Zbl

[8] Olshanskii M. A., Reuskert A., “Analysis of a Stokes interface problem”, Numer. Math., 103 (2006), 129–149 | DOI | MR | Zbl

[9] Ohmori K., Saito N., “On the convergence of finite element solutions to the interface problem for the Stokes system”, J. Comp. and Appl. math., 198:1 (2007), 116–128 | DOI | MR | Zbl

[10] Ohmori K., Saito N., “Flux-free finite element method with Lagrange multipliers for two-fluid flows”, J. Scien. Comp., 32:2 (2007), 147–173 | DOI | MR | Zbl

[11] Gordon W. J., Hall Ch. A., “Transfinite element methods: Blending functions interpolation over arbitrary curved element domains”, Numer. Math., 21 (1973), 109–129 | DOI | MR | Zbl

[12] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, N. Y., 1991 | MR | Zbl

[13] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98

[14] Rukavishnikov A. V., “O suschestvovanii i edinstvennosti obobschennogo resheniya zadachi Stoksa s razryvnym mnozhitelem”, Nauka — Khabarovskomu krayu, Materialy VII kraevogo konkursa-konferentsii molodykh uchenykh, Izd-vo KhGTU, Khabarovsk, 2005, 75–94

[15] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[16] Richter T., “Numerica methods for fluid-structure interaction problems”, Course of lectures, 2010 http://numerik.uni-hd.de/\allowbreakr̃ichter/SS10/fsi/fsi.pdf

[17] Braess D., Dahmen W., Wieners C., “A multigrid algorithm for the mortar finite element methods”, SIAM J. Numer. Anal., 37:1 (1999), 48–69 | DOI | MR | Zbl

[18] Wojhlmuth B., “Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers”, SIAM J. Numer. Anal., 36:5 (1999), 1636–1658 | DOI | MR

[19] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, v. I, Springer, N.Y.-Verlag, 1972

[20] Ben Belgacem F., Bernardi C., Chorfi N., Maday Y., “Inf-sup conditions for the mortar spectral element discretization of the Stokes problem”, Numer. Math., 85 (2000), 257–281 | DOI | MR | Zbl

[21] Boland J., Nicolaides R., “Stability of finite elements under divergence constraints”, SIAM J. Numer. Anal., 20:4 (1983), 722–731 | DOI | MR | Zbl

[22] Grisvard P., Elliptic problems in nonsmooth domains, Pitman, London, 1985 | MR | Zbl

[23] Bramble J. H., Pasciak J. E., Vassilev A. T., “Analysis of the inexact Uzawa algorithm for saddle point problems”, SIAM J. Numer. Anal., 34:3 (1997), 1072–1092 | DOI | MR | Zbl

[24] Saad Y., Iterative methods for sparse linear systems, PWS, New Jersey, 1996 | Zbl