On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1069-1071 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An upper bound on the distance between the centers of two successive traveling waves occurring in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation is established under generic conditions. Taking into account a previously established lower bound, an asymptotically sharper estimate is derived.
@article{ZVMMF_2012_52_6_a11,
     author = {A. V. Gasnikov},
     title = {On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the {Cauchy} problem for a {Burgers-type} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1069--1071},
     year = {2012},
     volume = {52},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/}
}
TY  - JOUR
AU  - A. V. Gasnikov
TI  - On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 1069
EP  - 1071
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/
LA  - ru
ID  - ZVMMF_2012_52_6_a11
ER  - 
%0 Journal Article
%A A. V. Gasnikov
%T On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 1069-1071
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/
%G ru
%F ZVMMF_2012_52_6_a11
A. V. Gasnikov. On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1069-1071. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/

[1] Gasnikov A. V., “O promezhutochnoi asimptotike resheniya zadachi Koshi dlya kvazilineinogo uravneniya parabolicheskogo tipa s monotonnym nachalnym usloviem”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 154–163 | MR | Zbl

[2] Gasnikov A. V., “Asimptoticheskoe po vremeni povedenie resheniya nachalnoi zadachi Koshi dlya zakona sokhraneniya s nelineinoi divergentnoi vyazkostyu”, Izv. RAN. Ser. matem., 76:6 (2009), 39–76 | DOI | MR | Zbl

[3] Gasnikov A. V., “Skhodimost po forme resheniya zadachi Koshi dlya kvazilineinogo uravneniya parabolicheskogo tipa s monotonnym nachalnym usloviem k sisteme voln”, Zh. vychisl. matem. i matem. fiz., 48:8 (2008), 1458–1487 | MR | Zbl

[4] Engelberf S., Schochet S., “Nonintegrable perturbation of scalar viscous shock profiles”, Asymptotic Analysis, 48 (2006), 121–140 | MR

[5] Henkin G. M., “Asymptotic structure for solutions of the Cauchy problem for Burgers type equations”, J. Fixed point theory appl., 1:2 (2007), 239–291 | DOI | MR | Zbl

[6] Henkin G. M., Polterovich V. M., “A difference-differential analogue of the Burgers equation: stability of the two-wave behavior”, J. Nonlinear Sci., 4 (1994), 497–517 | DOI | MR | Zbl

[7] Gasnikov A. V., Klenov S. L., Nurminskii E. A. i dr., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, ed. A. V. Gasnikov, MFTI, M., 2010