@article{ZVMMF_2012_52_6_a11,
author = {A. V. Gasnikov},
title = {On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the {Cauchy} problem for a {Burgers-type} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1069--1071},
year = {2012},
volume = {52},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/}
}
TY - JOUR AU - A. V. Gasnikov TI - On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 1069 EP - 1071 VL - 52 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/ LA - ru ID - ZVMMF_2012_52_6_a11 ER -
%0 Journal Article %A A. V. Gasnikov %T On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 1069-1071 %V 52 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/ %G ru %F ZVMMF_2012_52_6_a11
A. V. Gasnikov. On the velocity of separation between two successive traveling waves in the asymptotics of the solution to the Cauchy problem for a Burgers-type equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6, pp. 1069-1071. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a11/
[1] Gasnikov A. V., “O promezhutochnoi asimptotike resheniya zadachi Koshi dlya kvazilineinogo uravneniya parabolicheskogo tipa s monotonnym nachalnym usloviem”, Izv. RAN. Teoriya i sistemy upravleniya, 2008, no. 3, 154–163 | MR | Zbl
[2] Gasnikov A. V., “Asimptoticheskoe po vremeni povedenie resheniya nachalnoi zadachi Koshi dlya zakona sokhraneniya s nelineinoi divergentnoi vyazkostyu”, Izv. RAN. Ser. matem., 76:6 (2009), 39–76 | DOI | MR | Zbl
[3] Gasnikov A. V., “Skhodimost po forme resheniya zadachi Koshi dlya kvazilineinogo uravneniya parabolicheskogo tipa s monotonnym nachalnym usloviem k sisteme voln”, Zh. vychisl. matem. i matem. fiz., 48:8 (2008), 1458–1487 | MR | Zbl
[4] Engelberf S., Schochet S., “Nonintegrable perturbation of scalar viscous shock profiles”, Asymptotic Analysis, 48 (2006), 121–140 | MR
[5] Henkin G. M., “Asymptotic structure for solutions of the Cauchy problem for Burgers type equations”, J. Fixed point theory appl., 1:2 (2007), 239–291 | DOI | MR | Zbl
[6] Henkin G. M., Polterovich V. M., “A difference-differential analogue of the Burgers equation: stability of the two-wave behavior”, J. Nonlinear Sci., 4 (1994), 497–517 | DOI | MR | Zbl
[7] Gasnikov A. V., Klenov S. L., Nurminskii E. A. i dr., Vvedenie v matematicheskoe modelirovanie transportnykh potokov, ed. A. V. Gasnikov, MFTI, M., 2010