Method of finding inverse matrix order $N$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear parameterization of group $GL(N,C)$ formed by certain basis of matrices with in advance known symmetry properties is offered. The concept of the canonical basis is introduced by means of direct product of the corresponding so-called generalized Gell-Mann matrices. The properties of this canonical basis are enumerated and proved; algorithm of finding inverse matrix order $N$ in canonical basis is proposed.
@article{ZVMMF_2012_52_6_a0,
     author = {A. N. Lavrenov},
     title = {Method of finding inverse matrix order $N$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {979},
     year = {2012},
     volume = {52},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a0/}
}
TY  - JOUR
AU  - A. N. Lavrenov
TI  - Method of finding inverse matrix order $N$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 979
VL  - 52
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a0/
LA  - en
ID  - ZVMMF_2012_52_6_a0
ER  - 
%0 Journal Article
%A A. N. Lavrenov
%T Method of finding inverse matrix order $N$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 979
%V 52
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a0/
%G en
%F ZVMMF_2012_52_6_a0
A. N. Lavrenov. Method of finding inverse matrix order $N$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 6. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_6_a0/

[1] S. B. Pshenichnikov, R. M. Yamaleev, “Methods of Inverting Matrices of Order $2^n$”, Comput. Math. Math. Phys., 27:4 (1987), 188–191 | DOI | MR | Zbl

[2] Kh. I. Semerdzhiev, R. M. Yamaleev, Basis of Dickson Algebra and Its Matrix Realization, Communication of JINR P5-88-834, Dubna, 1988 (in Russian)

[3] R. A. Bertlmann, Ph. Krammer, “Bloch Vectors for Qudits”, J. Phys. A: Math. Theor., 41 (2008), 235303–235325 | DOI | MR

[4] F. I. Fedorov, Lorentz Group, Nauka, Moscow, 1979 (in Russian) | MR