@article{ZVMMF_2012_52_5_a9,
author = {W. Long},
title = {An indirect variable transformation approach and {Jacobi} elliptic solutions to {Korteweg} de {Vries} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {876},
year = {2012},
volume = {52},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/}
}
TY - JOUR AU - W. Long TI - An indirect variable transformation approach and Jacobi elliptic solutions to Korteweg de Vries equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 876 VL - 52 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/ LA - en ID - ZVMMF_2012_52_5_a9 ER -
%0 Journal Article %A W. Long %T An indirect variable transformation approach and Jacobi elliptic solutions to Korteweg de Vries equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 876 %V 52 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/ %G en %F ZVMMF_2012_52_5_a9
W. Long. An indirect variable transformation approach and Jacobi elliptic solutions to Korteweg de Vries equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/
[1] E. J. Parkes, B. R. Duffy, “An Automated Tanh-Function Method for Finding Solitary Wave Solutions to Nonlinear Evolution Equations”, Comput. Phys. Commun., 98 (1996), 288–296 | DOI
[2] W. Malfliet, W. Hereman, “The Tanh Method. I: Exact Solutions of Nonlinear Evolution and Wave Equations”, Phys. Scr., 54 (1996), 563–568 | DOI | MR | Zbl
[3] W. Malfliet, W. Hereman, “The Tanh Method. II: Perturbation Technique for Conservative Systems”, Phys. Scr., 54 (1996), 569–575 | DOI | MR | Zbl
[4] E. G. Fan, “Extended Tanh-Function Method and Its Applications to Nonlinear Equations”, Phys. Lett. A, 277 (2000), 212–218 | DOI | MR | Zbl
[5] A. M. Wazwaz, “The Tanh Method for Travelling Wave Solutions of Nonlinear Equations”, Appl. Math. Comput., 15 (2004), 713–723 | DOI | MR
[6] A. M. Wazwaz, “The Tanh Method: Exact Solutions of the Sine-Gordon and the Sinh-Gordon Equations”, Appl. Math. Comput., 167 (2005), 1196–1210 | DOI | MR | Zbl
[7] W. X. Ma, “Travelling Wave Solutions to a Seventh Order Generalized KdV Equation”, Phys. Lett. A, 180 (1993), 221–224 | DOI | MR
[8] E. J. Parkes, Z. Zhu, B. R. Duffy, H. C. Huang, “Sech-Polynomial Travelling Solitary-Wave Solutions of Odd-Order Generalized KdV Equations”, Phys. Lett. A, 248 (1998), 219–224 | DOI
[9] M. L. Wang, “Solitary Wave Solutions for Variant Boussinesq Equations”, Phys. Lett. A, 199 (1995), 169–172 | DOI | MR
[10] M. L. Wang, Y. B. Zhou, Z. B. Li, “Application of a Homogeneous Balance Method To Exact Solutions of Nonlinear Equations in Mathematical Physics”, Phys. Lett. A, 216 (1996), 67–75 | DOI | Zbl
[11] A. M. Wazwaz, “The Extended Tanh Method for New Solitons Solutions for Many Forms of the Fifth-Order KdV Equations”, Appl. Math. Comput., 184 (2007), 1002–1014 | DOI | MR | Zbl
[12] A. M. Wazwaz, “The Tanh-Coth Method for Solitons and Kink Solutions for Nonlinear Parabolic Equations”, Appl. Math. Comput., 188 (2007), 1467–1475 | DOI | MR | Zbl
[13] S. K. Liu, Z. T. Fu, S. D. Liu, Q. Zhao, “Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations”, Phys. Lett. A, 289 (2001), 69–74 | DOI | MR | Zbl
[14] J. H. He, X. H. Wu, “Exp-Function Method for Nonlinear Wave Equations”, Chaos Solitons Fractals, 30 (2006), 700–708 | DOI | MR | Zbl
[15] J. B. Liu, K. Q. Yang, “The Extended F-Expansion Method and Exact Solutions of Nonlinear PDEs”, Chaos Solitons Fractals, 22 (2004), 111–121 | DOI | MR | Zbl
[16] Y. Chen, Z. Y. Yan, “New Exact Solutions of $(2+1)$-Dimensional Gardner Equation via the New Sine-Gordon Equation Expansion Method”, Chaos Solitons Fractals, 26 (2005), 399–406 | DOI | MR | Zbl
[17] W. X. Ma, J. H. Lee, “A Transformed Rational Function Method and Exact Solutions to the $(3+1)$-Dimensional Jimbo–Miwa Equation”, Chaos Solitons Fractals, 42 (2009), 1356–1363 | DOI | MR | Zbl
[18] S. Sirendaoreji, J. Sun, “A Direct Method for Solving Sinh-Gordon Type Equation”, Phys. Lett. A, 298 (2002), 133–139 | DOI | MR | Zbl
[19] A. M. Wazwaz, “Travelling Wave Solutions for the MKdV-Sine-Gordon and the MKdV-Sinh-Gordon Equations by Using a Variable Separated ODE Method”, Appl. Math. Comput., 181 (2006), 1713–1719 | DOI | MR | Zbl
[20] A. M. Wazwaz, “The Variable Separated ODE and the Tanh Methods for Solving the Combined and the Double Combined Sinh-Cosh-Gordon Equations”, Appl. Math. Comput., 177 (2006), 745–754 | DOI | MR | Zbl
[21] A. M. Wazwaz, “Travelling Wave Solutions for Combined and Double Combined Sine-Cosine-Gordon Equations”, Appl. Math. Comput., 177 (2006), 755–760 | DOI | MR | Zbl
[22] Z. Y. Yan, “A Sinh-Gordon Equation Expansion Method To Construct Doubly Periodic Solutions for Nonlinear Differential Equations”, Chaos Solitons Fractals, 16 (2003), 291–297 | DOI | MR | Zbl