An indirect variable transformation approach and Jacobi elliptic solutions to Korteweg de Vries equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on a variable change and the variable separated ODE method, an indirect variable transformation approach is proposed to search exact solutions to special types of partial differential equations (PDEs). The new method provides a more systematical and convenient handling of the solution process for the nonlinear equations. Its key point is to reduce the given PDEs to variable-coefficient ordinary differential equations, then we look for solutions to the resulting equations by some methods. As an application, exact solutions for the KdV equation are formally derived.
@article{ZVMMF_2012_52_5_a9,
     author = {W. Long},
     title = {An indirect variable transformation approach and {Jacobi} elliptic solutions to {Korteweg} de {Vries} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {876},
     year = {2012},
     volume = {52},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/}
}
TY  - JOUR
AU  - W. Long
TI  - An indirect variable transformation approach and Jacobi elliptic solutions to Korteweg de Vries equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 876
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/
LA  - en
ID  - ZVMMF_2012_52_5_a9
ER  - 
%0 Journal Article
%A W. Long
%T An indirect variable transformation approach and Jacobi elliptic solutions to Korteweg de Vries equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 876
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/
%G en
%F ZVMMF_2012_52_5_a9
W. Long. An indirect variable transformation approach and Jacobi elliptic solutions to Korteweg de Vries equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a9/

[1] E. J. Parkes, B. R. Duffy, “An Automated Tanh-Function Method for Finding Solitary Wave Solutions to Nonlinear Evolution Equations”, Comput. Phys. Commun., 98 (1996), 288–296 | DOI

[2] W. Malfliet, W. Hereman, “The Tanh Method. I: Exact Solutions of Nonlinear Evolution and Wave Equations”, Phys. Scr., 54 (1996), 563–568 | DOI | MR | Zbl

[3] W. Malfliet, W. Hereman, “The Tanh Method. II: Perturbation Technique for Conservative Systems”, Phys. Scr., 54 (1996), 569–575 | DOI | MR | Zbl

[4] E. G. Fan, “Extended Tanh-Function Method and Its Applications to Nonlinear Equations”, Phys. Lett. A, 277 (2000), 212–218 | DOI | MR | Zbl

[5] A. M. Wazwaz, “The Tanh Method for Travelling Wave Solutions of Nonlinear Equations”, Appl. Math. Comput., 15 (2004), 713–723 | DOI | MR

[6] A. M. Wazwaz, “The Tanh Method: Exact Solutions of the Sine-Gordon and the Sinh-Gordon Equations”, Appl. Math. Comput., 167 (2005), 1196–1210 | DOI | MR | Zbl

[7] W. X. Ma, “Travelling Wave Solutions to a Seventh Order Generalized KdV Equation”, Phys. Lett. A, 180 (1993), 221–224 | DOI | MR

[8] E. J. Parkes, Z. Zhu, B. R. Duffy, H. C. Huang, “Sech-Polynomial Travelling Solitary-Wave Solutions of Odd-Order Generalized KdV Equations”, Phys. Lett. A, 248 (1998), 219–224 | DOI

[9] M. L. Wang, “Solitary Wave Solutions for Variant Boussinesq Equations”, Phys. Lett. A, 199 (1995), 169–172 | DOI | MR

[10] M. L. Wang, Y. B. Zhou, Z. B. Li, “Application of a Homogeneous Balance Method To Exact Solutions of Nonlinear Equations in Mathematical Physics”, Phys. Lett. A, 216 (1996), 67–75 | DOI | Zbl

[11] A. M. Wazwaz, “The Extended Tanh Method for New Solitons Solutions for Many Forms of the Fifth-Order KdV Equations”, Appl. Math. Comput., 184 (2007), 1002–1014 | DOI | MR | Zbl

[12] A. M. Wazwaz, “The Tanh-Coth Method for Solitons and Kink Solutions for Nonlinear Parabolic Equations”, Appl. Math. Comput., 188 (2007), 1467–1475 | DOI | MR | Zbl

[13] S. K. Liu, Z. T. Fu, S. D. Liu, Q. Zhao, “Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations”, Phys. Lett. A, 289 (2001), 69–74 | DOI | MR | Zbl

[14] J. H. He, X. H. Wu, “Exp-Function Method for Nonlinear Wave Equations”, Chaos Solitons Fractals, 30 (2006), 700–708 | DOI | MR | Zbl

[15] J. B. Liu, K. Q. Yang, “The Extended F-Expansion Method and Exact Solutions of Nonlinear PDEs”, Chaos Solitons Fractals, 22 (2004), 111–121 | DOI | MR | Zbl

[16] Y. Chen, Z. Y. Yan, “New Exact Solutions of $(2+1)$-Dimensional Gardner Equation via the New Sine-Gordon Equation Expansion Method”, Chaos Solitons Fractals, 26 (2005), 399–406 | DOI | MR | Zbl

[17] W. X. Ma, J. H. Lee, “A Transformed Rational Function Method and Exact Solutions to the $(3+1)$-Dimensional Jimbo–Miwa Equation”, Chaos Solitons Fractals, 42 (2009), 1356–1363 | DOI | MR | Zbl

[18] S. Sirendaoreji, J. Sun, “A Direct Method for Solving Sinh-Gordon Type Equation”, Phys. Lett. A, 298 (2002), 133–139 | DOI | MR | Zbl

[19] A. M. Wazwaz, “Travelling Wave Solutions for the MKdV-Sine-Gordon and the MKdV-Sinh-Gordon Equations by Using a Variable Separated ODE Method”, Appl. Math. Comput., 181 (2006), 1713–1719 | DOI | MR | Zbl

[20] A. M. Wazwaz, “The Variable Separated ODE and the Tanh Methods for Solving the Combined and the Double Combined Sinh-Cosh-Gordon Equations”, Appl. Math. Comput., 177 (2006), 745–754 | DOI | MR | Zbl

[21] A. M. Wazwaz, “Travelling Wave Solutions for Combined and Double Combined Sine-Cosine-Gordon Equations”, Appl. Math. Comput., 177 (2006), 755–760 | DOI | MR | Zbl

[22] Z. Y. Yan, “A Sinh-Gordon Equation Expansion Method To Construct Doubly Periodic Solutions for Nonlinear Differential Equations”, Chaos Solitons Fractals, 16 (2003), 291–297 | DOI | MR | Zbl