Polyhedral approximation of convex compact bodies by filling methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 818-828 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of iterative methods – filling methods – for polyhedral approximation of convex compact bodies is introduced and studied. In contrast to augmentation methods, the vertices of the approximating polytope can lie not only on the boundary of the body but also inside it. Within the proposed class, Hausdorff or $H$-methods of filling are singled out, for which the convergence rates (asymptotic and at the initial stage of the approximation) are estimated. For the approximation of nonsmooth convex compact bodies, the resulting convergence rate estimates coincide with those for augmentation $H$-methods.
@article{ZVMMF_2012_52_5_a5,
     author = {G. K. Kamenev and A. I. Pospelov},
     title = {Polyhedral approximation of convex compact bodies by filling methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {818--828},
     year = {2012},
     volume = {52},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a5/}
}
TY  - JOUR
AU  - G. K. Kamenev
AU  - A. I. Pospelov
TI  - Polyhedral approximation of convex compact bodies by filling methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 818
EP  - 828
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a5/
LA  - ru
ID  - ZVMMF_2012_52_5_a5
ER  - 
%0 Journal Article
%A G. K. Kamenev
%A A. I. Pospelov
%T Polyhedral approximation of convex compact bodies by filling methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 818-828
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a5/
%G ru
%F ZVMMF_2012_52_5_a5
G. K. Kamenev; A. I. Pospelov. Polyhedral approximation of convex compact bodies by filling methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 818-828. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a5/

[1] Bronshtein E. M., “Approksimatsiya vypuklykh mnozhestv mnogogrannikami”, Sovremennaya matem. Fundamentalnye napravleniya. Geometriya, 22, RUDN, M., 2007, 5–37 | MR

[2] Gruber P. M., “Aspects of approximation of convex bodies”, Handbook of Convex Geometry, eds. P. M. Gruber, J. M. Wills, Elsevier Sci. Publishers B. V., 1993, 321–345 | MR

[3] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[4] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer Academic Publishers, Boston, 2004 | MR | Zbl

[5] Kamenev G. K., Optimalnye adaptivnye metody poliedralnoi approksimatsii vypuklykh tel, VTs RAN, M., 2007 | MR

[6] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR

[7] Pospelov A. I., “Approksimatsiya vypukloi obolochki Edzhvorta–Pareto v mnogokriterialnykh zadachakh s monotonnymi kriteriyami”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1765–1778 | MR | Zbl

[8] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[9] Lotov A. V., Pospelov A. I., “Modifitsirovannyi metod utochneniya otsenok dlya poliedralnoi approksimatsii vypuklykh mnogogrannikov”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 990–998 | MR | Zbl

[10] Kamenev G. K., “Ob effektivnosti khausdorfovykh algoritmov poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 796–805 | MR | Zbl