The behavior of the convergence of the combined iteration method for solving nonlinear equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 790-800 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{ZVMMF_2012_52_5_a3,
     author = {T. Zhanlav and D. Hongorzul},
     title = {The behavior of the convergence of the combined iteration method for solving nonlinear equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {790--800},
     year = {2012},
     volume = {52},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a3/}
}
TY  - JOUR
AU  - T. Zhanlav
AU  - D. Hongorzul
TI  - The behavior of the convergence of the combined iteration method for solving nonlinear equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 790
EP  - 800
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a3/
LA  - ru
ID  - ZVMMF_2012_52_5_a3
ER  - 
%0 Journal Article
%A T. Zhanlav
%A D. Hongorzul
%T The behavior of the convergence of the combined iteration method for solving nonlinear equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 790-800
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a3/
%G ru
%F ZVMMF_2012_52_5_a3
T. Zhanlav; D. Hongorzul. The behavior of the convergence of the combined iteration method for solving nonlinear equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 790-800. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a3/

[1] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[3] Zhanlav T., Chuluunbaatar O., “O nekotorykh iteratsionnykh metodakh vysokogo poryadka skhodimosti dlya resheniya nelineinykh uravnenii”, Vestn. RUDN: Seriya Matem. Informatika. Fizika, 2009, no. 4, 47–55

[4] Zhanlav T., Puzynin I. V., “O skhodimosti iteratsii na osnove nepreryvnogo analoga metoda Nyutona”, Zh. vychisl. matem. i matem. fiz., 32:6 (1992), 846–856 | MR | Zbl

[5] Zhanlav T., Chuluunbaatar O., “Convergence of a continuous analog of Newton's method for solving nonlinear equations”, Numer. Meth. and Prog., 2009, no. 10, 402–407

[6] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[7] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[8] Podlevskii B. M., “Pro odin pidkhid do pobudovi dvostoronnikh iteratsiinikh metodiv rozv'yazuvaniya neliniinikh rivnyan”, Dop. NAN Ukraini, 1998, no. 5, 37–41 | MR

[9] Ortega J. M., Rheinboldt W. C., Iterative solution of nonlinear equations in several variables, Academic Press, New-York, 1970 | MR | Zbl

[10] Deufhard P., Newton method for nonlinear problems. Affine invariance and adaptive algorithms, Springer international, 2002