Possibility of explaining the existence of vortexlike hydrodynamic structures based on the theory of stationary kinetic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 960-969 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of describing vortex structures in quasi-one-dimensional plane flows by applying kinetic equations and bifurcation theory is examined. The Lyapunov-Schmidt method is used to obtain a system of Riccati-type generalized bifurcation equations. An analysis of its properties leads to conditions for the existence of vortex structures.
@article{ZVMMF_2012_52_5_a16,
     author = {O. M. Belotserkovskii and N. N. Fimin and V. M. Chechetkin},
     title = {Possibility of explaining the existence of vortexlike hydrodynamic structures based on the theory of stationary kinetic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {960--969},
     year = {2012},
     volume = {52},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a16/}
}
TY  - JOUR
AU  - O. M. Belotserkovskii
AU  - N. N. Fimin
AU  - V. M. Chechetkin
TI  - Possibility of explaining the existence of vortexlike hydrodynamic structures based on the theory of stationary kinetic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 960
EP  - 969
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a16/
LA  - ru
ID  - ZVMMF_2012_52_5_a16
ER  - 
%0 Journal Article
%A O. M. Belotserkovskii
%A N. N. Fimin
%A V. M. Chechetkin
%T Possibility of explaining the existence of vortexlike hydrodynamic structures based on the theory of stationary kinetic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 960-969
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a16/
%G ru
%F ZVMMF_2012_52_5_a16
O. M. Belotserkovskii; N. N. Fimin; V. M. Chechetkin. Possibility of explaining the existence of vortexlike hydrodynamic structures based on the theory of stationary kinetic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 960-969. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a16/

[1] Belotserkovskii O. M., Khlopkov Yu. I., Metody Monte-Karlo v mekhanike zhidkosti i gaza, OOO “Azbuka-2000”, M., 2008

[2] Wu J.-Z., Ma H.-Y., Zhou M.-D., Vorticity and vortex dynamics, Springer-Verlag, Berlin–Heidelberg, 2006

[3] Sedov L. I., Mekhanika sploshnoi sredy, v. 2, Nauka, M., 1970

[4] Belotserkovskii O. M., Guschin V. A., “Novye chislennye modeli v mekhanike sploshnykh sred”, Uspekhi mekhaniki, 8:1 (1985), 97–150 | MR

[5] Belotserkovskii O. M., “Pryamoe chislennoe modelirovanie svobodnoi razvitoi turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 25:12 (1985), 1856–1882 | MR

[6] Belotserkovskii O. M., Oparin A. M., Chechetkin V. M., Turbulentnost: novye podkhody, Nauka, M., 2002

[7] Saffman P. G., Vortex dynamics, Cambridge University Press, N. Y., 1992 | MR | Zbl

[8] Zhigulev B. H., “Uravneniya turbulentnogo dvizheniya v gaze”, Dokl. AN SSSR, 10:3 (1966), 1003–1005 | MR

[9] Tsuge S., “Approach to origin of turbulence on the basis of two-point kinetic theory”, Phys. Fluids, 17 (1974), 22–33 | DOI | Zbl

[10] Aristov B. B., Zabelok C. A., “Vikhrevaya struktura neustoichivoi strui, izuchaemoi na osnove uravneniya Boltsmana”, Mat. modelirovanie, 13:6 (2001), 87–92 | Zbl

[11] Aristov B. B., “Reshenie uravneniya Boltsmana pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 44:6, 1127–1140 | MR | Zbl

[12] Arkeryd L., Nouri A., “On a Taylor–Couette type bifurcation for the stationary nonlinear Boltzmann equation”, J. Stat. Phys., 124:2–4 (2006), 401–443 | DOI | MR | Zbl

[13] Sone Y., Takata S., Ohwada T., “Numerical analysis of the plane Couette flow of a rarefied flow a rarefied gas on the basis of the linearized Boltzmann equation for hard-sphere molecules”, Eur. J. Mech. B/Fluids, 9 (1990), 273–288 | Zbl

[14] Lagha M., Manneville P., “Modeling of plane Couette flow. I: Large scale flow around turbulent spots”, Phys. Fluids, 19 (2007), 94–105

[15] Lagha M., Manneville P., “Modeling of plane Couette flow. II: On the spreading of a turbulent spot”, Phys. Fluids, 19 (2007), 104–108

[16] Manela A., Frankel I., “On the compressible Taylor–Couette problem”, J. Fluid Mech., 588 (2007), 59–74 | DOI | MR | Zbl

[17] Grad H., “Asymptotic theory of the Boltzmann equation, 2”, Rarefied gas dynamics, Academic Press, New York, 1963 | MR

[18] Nishida T., “Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation”, Commun. Math. Phys., 61 (1978), 119–148 | DOI | MR | Zbl

[19] Van der Pol B., Bremmer Kh., Operatsionnoe ischislenie na osnove dvustoronnego preobrazovaniya Laplasa, IIL, M., 1952

[20] Belotserkovskii O. M., Oparin A. M., Chechetkin V. M., “Fizicheskie protsessy razvitiya sdvigovoi turbulentnosti”, Zh. eksperim. i teor. fiz., 126:3(9) (2004), 577–584

[21] Gohberg I., Goldberg S., Kaashoek M., Classes of linear operators, v. I, Birkhauser Verlag, Basel–Boston–Berlin, 1990 | MR

[22] Kato T., “Perturbation theory for nullity, deficiency and other quantities of linear operators”, J. Analyse Math., 6 (1958), 261–322 | DOI | MR | Zbl

[23] Caflisch R. E., Nicolaenko B., “Shock profile solutions of the Boltzmann equation”, Commun. Math. Phys., 86 (1982), 161–194 | DOI | MR | Zbl

[24] Ditkin V. V., “O nekotorykh spektralnykh svoistvakh puchka lineinykh ogranichennykh operatorov”, Matem. zametki, 31:1 (1982), 75–79 | MR | Zbl

[25] Nicolaenko B., Thurber J. K., “Weak shock and bifurcating solutions of the non-linear Boltzmann equation”, J. de Mecanique, 14:2 (1975), 305–338 | MR | Zbl

[26] Nicolaenko B., “Shock wave solutions of the Boltzmann equation as a nonlinear bifurcation problem from the essential spectrum”, Proc. on theories cinetiques classiques et relativistes (Paris, June 10–14, 1974), Colloq. Internation. C.R.N.S., 127–150 | MR | Zbl

[27] Deimling K., Nonlinear functional analysis, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985 | MR | Zbl

[28] Klimontovich Yu. L., Statisticheskaya fizika, Nauka, M., 1982

[29] Morita T., Mori H., Tokuyama M., “A scaling method for deriving kinetic equations from the BBGKY hierarchy”, J. Stat. Phys., 18:2 (1978), 137–153 | DOI | MR

[30] Mori H., “Statistical-mechanical theory of kinetic equations”, Progr. Theor. Phys., 49:2 (1978), 1516–1545

[31] Sreenivasan S. K., “Theory of turbulence”, Zeitschrift für Physik, 205 (1967), 221–225 | DOI

[32] Onuki A., “On fluctuations in $\mu$ space”, J. Stat. Phys., 18:5 (1978), 475–499 | DOI | MR

[33] Shariati H., “Bifurcation on periodic solution from an equilibrium point in the multiparameter case”, J. Sci. I. R. Iran, 4:1 (1993), 60–70

[34] Cercignani C., Rarefied gas dynamics. From basic concepts to actual calculations, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[35] Chafee N., “The bifurcation of one or more closed orbits from an equilibrium point of an autonomous differential system”, J. Different. Equat., 4 (1968), 661–679 | DOI | MR | Zbl

[36] Wiggins S., Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, New York–Berlin–Heidelberg, 1996 | MR

[37] Bibikov Yu. N., Kurs obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1991

[38] Marsden J., McCracken M., Hopf bifurcation and its applications, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR

[39] Shelest A. V., Metod Bogolyubova v dinamicheskoi teorii kineticheskikh uravnenii, Nauka, M., 1990

[40] Kato T., Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR