Formation of wavy nanostructures on the surface of flat substrates by ion bombardment
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 930-945 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A popular mathematical model for the formation of an inhomogeneous topography on the surface of a plate (flat substrate) during ion bombardment was considered. The model is described by the Bradley–Harper equation, which is frequently referred to as the generalized Kuramoto–Sivashinsky equation. It was shown that inhomogeneous topography (nanostructures in the modern terminology) can arise when the stability of the plane incident wavefront changes. The problem was solved using the theory of dynamical systems with an infinite-dimensional phase space, in conjunction with the integral manifold method and Poincaré–Dulac normal forms. A normal form was constructed using a modified Krylov–Bogolyubov algorithm that applies to nonlinear evolutionary boundary value problems. As a result, asymptotic formulas for solutions of the given nonlinear boundary value problem were derived.
@article{ZVMMF_2012_52_5_a14,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Formation of wavy nanostructures on the surface of flat substrates by ion bombardment},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {930--945},
     year = {2012},
     volume = {52},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a14/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Formation of wavy nanostructures on the surface of flat substrates by ion bombardment
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 930
EP  - 945
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a14/
LA  - ru
ID  - ZVMMF_2012_52_5_a14
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Formation of wavy nanostructures on the surface of flat substrates by ion bombardment
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 930-945
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a14/
%G ru
%F ZVMMF_2012_52_5_a14
A. N. Kulikov; D. A. Kulikov. Formation of wavy nanostructures on the surface of flat substrates by ion bombardment. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 930-945. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a14/

[1] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Tech. A, 6 (1988), 2390–2395 | DOI

[2] Kudryashov N. A., Ryabov P. N., Strikhanov M. N., “Chislennoe modelirovanie formirovaniya nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Yadernaya fiz. i inzhiniring, 1:2 (2010), 151–158 | MR

[3] Sigmund P., Sputtering by ion bombardment. Theoretical concepts. Sputtering by pentacle bombardment, Springer-Verlag, Berlin, 1981

[4] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, Leningrad, 1950

[5] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[6] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[7] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Izd-vo YarGU, Yaroslavl, 1976, 114–129 | MR

[8] Foias C., Sell G. R., Temam R., “Inertial manifold for nonlinear evolutionary equations”, J. Diff. Eq., 73 (1988), 309–352 | DOI | MR

[9] Kulikov A. N., Inertsialnye mnogoobraziya nelineinykh avtonomnykh differentsialnykh uravnenii v gilbertovom prostranstve, Preprint No 85, IP Matem. AN SSSR, M., 1991, 22 pp. | MR

[10] Neimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[11] Funktsionalnyi analiz. Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972

[12] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[13] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988

[14] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, Izd-vo YarGU, Yaroslavl, 2003

[15] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differents. ur-niya, 39:5 (2003), 584–601 | MR | Zbl

[16] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differents. ur-niya, 39:6 (2003), 738–753 | MR | Zbl

[17] Kulikov A. N., Kulikov D. A., “Lokalnye bifurkatsii ploskikh beguschikh voln obobschennogo kubicheskogo uravneniya Shredingera”, Differents. ur-niya, 40:9 (2010), 1290–1299 | MR

[18] Kulikov A. N., Kulikov D. A., “Bifurkatsii avtovoln obobschennogo kubicheskogo uravneniya Shredingera v sluchae trekh nezavisimykh peremennykh”, Vestn. Udmurtskogo un-ta, 2008, no. 3, 23–34

[19] Rudyi A. S., Kulikov A. N., Metlitskaya A. V., “Modelirovanie protsessov formirovaniya nanostruktur pri raspylenii poverkhnosti ionnoi bombardirovkoi”, Mikroelektronika, 40:2 (2011), 109–118 | MR