Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 916-929 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Minkowski’s classical work underlying modern electrodynamics is described. Primary attention is given to the mathematical refinements that are required if the parameters $\varepsilon$ and $\mu$ depend on the properties of the dielectric fluid, i.e., the medium carrying charges in the field under study. It is shown that the motion of the medium and the accompanying evolution of the electromagnetic field are described by differential equations that are symmetric and hyperbolic in the sense of Friedrichs. This property guarantees their well-posedness. Note that this class of equations was not known in Minkowski’s time. At present, it plays an important role in the mathematical simulation of nonstationary processes and in the design of numerical algorithms. The author’s view of the mathematical foundations of Minkowski’s work is presented, which relates the latter to present-day insights into the theory of differential equations. This paper can possibly be of interest to physicists.
@article{ZVMMF_2012_52_5_a13,
     author = {S. K. Godunov},
     title = {Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {916--929},
     year = {2012},
     volume = {52},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a13/}
}
TY  - JOUR
AU  - S. K. Godunov
TI  - Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 916
EP  - 929
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a13/
LA  - ru
ID  - ZVMMF_2012_52_5_a13
ER  - 
%0 Journal Article
%A S. K. Godunov
%T Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 916-929
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a13/
%G ru
%F ZVMMF_2012_52_5_a13
S. K. Godunov. Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5, pp. 916-929. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a13/

[1] Landau L. D., Lifshits E. M., Mekhanika sploshnykh sred, GITTL, M., 1954

[2] Fok V. A., Teoriya prostranstva, vremeni i tyagoteniya, Fizmatgiz, M., 1961

[3] Minkowski H., “Die Grundgleichungen für die elektromagnetischen Vorgange in bewegten Körpern”, Vorgelegt in der Sitzung vom 21 Dezember 1907, Nachrichten von der Gesellschaft der Wissenschaften zu Göttigen. Mathematisch-Physikalische Klasse, 1908, 53–111 | Zbl

[4] Tamm I. E., Osnovy teorii elektrichestva, GITTL, M., 1954

[5] Zommerfeld A., Elektrodinamika, Izd-vo inostr. lit., M., 1958

[6] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, § 57, GITTL, M., 1957, 308–309

[7] Leontovich M. A., Vvedenie v termodinamiku, GITTL, M., 1950

[8] Rumer Yu. B., Ryvkin M. Sh., Termodinamika, statisticheskaya fizika i kinetika, Fizmatlit, M., 1977

[9] Godunov S. K., “Termodinamika gazov i differentsialnye uravneniya”, Uspekhi matem. nauk, 14:5 (1959), 97–116 | MR

[10] Godunov S. K., “O ponyatii obobschennogo resheniya”, Dokl. AN SSSR, 134 (1960) | MR | Zbl

[11] Godunov S. K., “O needinstvennom “razmazyvanii” razryvov v resheniyakh kvazilineinykh sistem”, Dokl. AN SSSR, 136 (1961), 272–273 | MR | Zbl

[12] Godunov S. K., “Problema obobschennogo resheniya v teorii kvazilineinykh uravnenii i v gazovoi dinamike”, Uspekhi matem. nauk, 17:3 (1962), 145–156 | MR | Zbl

[13] Godunov S. K., Romenskii E. I., “Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media”, Comput. Fluid Dynamics Rev., John Wiley, 1995, 19–30 | Zbl

[14] Godunov S. K., “Simmetricheskaya forma uravnenii magnitnoi gidrodinamiki”, Chislennye metody sploshnoi sredy, 3, no. 1, VTs SO AN SSSR, 1972, 26–34

[15] Godunov S. K., “Lois de conservation et integrals d'energie des equations hyperboliques”, Nonlinear Hyperbolic Problems (St. Etienne, 1986), Lect. Notes in Math., 1270, Springer-Verlag, 1987, 135–149 | DOI | MR

[16] Godunov S. K., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978 | MR

[17] Godunov S. K., Peshkov I. M., “Simmetricheskie giperbolicheskie uravneniya nelineinoi teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1034–1055 | MR | Zbl

[18] Godunov S. K., Romenskii E. I., Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchn. kniga, Novosibirsk, 1998

[19] Godunov S. K., Romenskii E. I., Elements of continuum mechanics and conservation laws, Kluwer, New York; Plenum Publ., 2003, VIII | MR | Zbl

[20] Godunov S. K., “Galileevo-invariantnaya i termodinamicheskaya soglasovannaya model sostavnoi izotropnoi sredy”, Prikl. mekhan. i tekhn. fiz., 45:5 (2004), 3–12 | MR | Zbl

[21] Ginzburg V. L., Ugarov V. A., “Neskolko zamechanii o silakh i tenzore energii-impulsa v makroskopicheskoi elektrodinamike”, Uspekhi fiz. nauk, 118:1 (1976), 175–188 | DOI | MR

[22] Makarov V. P., Rukhadze A. A., “Sila, deistvuyuschaya na veschestvo v elektromagnitnom pole”, Uspekhi fiz. nauk, 179:9 (2009), 995–1001 | DOI