A Lagrangian description of the higher-order Painlevé equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive the Lagrangians of the higher-order Painlevé equations using Jacobi’s last multiplier technique. Some of these higher-order differential equations display certain remarkable properties like passing the Painlevé test and satisfy the conditions stated by Jurás̆, thus allowing for a Lagrangian description.
@article{ZVMMF_2012_52_5_a10,
     author = {A. Choudhury and P. Guha and N. A. Kudryashov},
     title = {A {Lagrangian} description of the higher-order {Painlev\'e} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {877},
     year = {2012},
     volume = {52},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a10/}
}
TY  - JOUR
AU  - A. Choudhury
AU  - P. Guha
AU  - N. A. Kudryashov
TI  - A Lagrangian description of the higher-order Painlevé equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 877
VL  - 52
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a10/
LA  - en
ID  - ZVMMF_2012_52_5_a10
ER  - 
%0 Journal Article
%A A. Choudhury
%A P. Guha
%A N. A. Kudryashov
%T A Lagrangian description of the higher-order Painlevé equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 877
%V 52
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a10/
%G en
%F ZVMMF_2012_52_5_a10
A. Choudhury; P. Guha; N. A. Kudryashov. A Lagrangian description of the higher-order Painlevé equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_5_a10/

[1] N. A. Kudryashov, “The First and Second Painlevé Equations of Higher Order and Some Relations between Them”, Phys. Lett. A, 224 (1997), 353–360 | DOI | MR

[2] A. N. W. Hone, “Nonautonomous Henon-Heiles Systems”, Phys. D (Amsterdam), 118 (1998), 1–16 | DOI | MR | Zbl

[3] N. A. Kudryashov, “On Transcendents Defined by Nonlinear Ordinary Differential Equations”, J. Phys. A: Math. Gen., 31 (1998), L129 | DOI | MR | Zbl

[4] N. A. Kudryashov, M. B. Soukharev, “Uniformization and Transcendence of Solutions for the First and Second Painlevé Hierarchies”, Phys. Lett. A, 237:4–5 (1998), 206–216 | DOI | MR | Zbl

[5] U. Mugan, F. Jrad, “Painlevé Test and the First Painlevé Hierarchy”, J. Phys. A: Math. Gen., 32 (1999), 7933 | DOI | MR | Zbl

[6] N. A. Kudryashov, “Some Fourth-Order Ordinary Differential Equations Which Pass the Painlevé Test”, J. Nonlinear Math. Phys., 8 (2001), 172–177 | DOI | MR | Zbl

[7] U. Mugan, F. Jrad, “Painlevé Test and Higher Order Differential Equations”, J. Nonlinear Math. Phys., 9:3 (2002), 1–29 | MR

[8] N. A. Kudryashov, “Two Hierarchies of Ordinary Differential Equations and Their Properties”, Phys. Lett. A, 252 (1999), 173–179 | DOI | MR | Zbl

[9] S. Shimomura, “A Certain Expression for the First Painlevé Hierarchy”, Proc. Japan Acad. Ser. A, 80 (2004), 105–109 | DOI | MR | Zbl

[10] S. Shimomura, “Poles and $\alpha$-Points of Meromorphic Solutions of the First Painlevé Hierarchy”, Publ. RIMS, 40 (2004), 471–485 | DOI | MR | Zbl

[11] T. Aoki, “Multiple-Scale Analysis for Higher-Order Painlevé Equations”, RIMS B, 5 (2008), 89–98 | MR

[12] M. Y. Mo, “Twistor Reductions of the KdV Hierarchy”, J. Geom. Phys., 59 (2009), 234–245 | DOI | MR | Zbl

[13] D. Dai, L. Zhang, “On Troquée Solutions of the First Painlevé Hierarchy”, J. Math. Anal. Appl., 368 (2010), 393–399 | DOI | MR | Zbl

[14] P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. Ecole Norm. Sup., 30:3 (1913), 255–375 | MR | Zbl

[15] P. Boutroux, “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite)”, Ann. Sci. Ecole Norm. Sup., 31:3 (1914), 99–159 | MR | Zbl

[16] T. Claeys, M. Vanlessen, “The Existence of a Real Pole — Free Solution of the Fourth Order Analogue of the Painlevé I Equation”, Nonlinearity, 20 (2007), 1163–1184 | DOI | MR | Zbl

[17] T. Claeys, M. Vanlessen, “Universality of a Double Scaling Limit near Singular Edge Points in Random Matrix Models”, Comm. Math. Phys., 273 (2007), 499–532 | DOI | MR | Zbl

[18] M. Mazzocco, M. Y. Mo, “The Hamiltonian Structure of the Second Painlevé Hierarchy”, Nonlinearity, 20 (2007), 2845–2882 | DOI | MR | Zbl

[19] C. G. J. Jacobi, “Sul principio dell'ultimo moltiplicatore, e suo uso come nuovo principio generale di meccanica”, Giornale Arcadico di Scienze, Lett. Arti, 99 (1844), 129–146

[20] C. G. J. Jacobi, “Theoria novi multiplicatoris systematic aequationum differentialium vulgarium applicandi”, J. Reine Angew. Math., 27 (1844), 199–268 | DOI | Zbl

[21] M. C. Nucci, P. G. L. Leach, “The Method of Ostragradsky, Quantization, and a Move toward a Ghost-Free Future”, J. Math. Phys., 50 (2009), 113508 | DOI | MR | Zbl

[22] B. S. Madhava Rao, “On the Reduction of Dynamical Equations to the Lagrangian Form”, Proc. Benaras Math. Soc. (N.S.), 2 (1940), 53–59 | MR | Zbl

[23] G. Darboux, Lecon sur la théorie générale des surfaces, v. 3, Gauthier-Villars, Paris, 1894 | Zbl

[24] H. Helmholtz, J. Reine Angew. Math., 100 (1887), 137

[25] J. Lopuszanski, The Inverse Variational Problem in Classical Mechanics, World Scientific, Singapore, 1999 | MR | Zbl

[26] M. E. Fels, “The Inverse Problem of the Calculus of Variations for Scalar Fourth-Order Ordinary Differential Equations”, Trans. Am. Math. Soc., 348 (1996), 5007–5029 | DOI | MR | Zbl

[27] M. Juras, “The Inverse Problem of the Calculus of Variations for Sixth- and Eighth-Order Scalar Ordinary Differential Equations”, Acta Appl. Math., 66:1 (2001), 25–39 | DOI | MR | Zbl

[28] J. Douglas, “Solution to the Inverse Problem of the Calculus of Variations”, Trans. Am. Math. Soc., 50 (1941), 71–128 | DOI | MR

[29] I. Anderson, G. Thompson, The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations, Mem. Am. Math. Soc., 98, no. 473, 1992 | MR | Zbl

[30] I. Anderson www.math.usu.edu/fgmp/.../IntroVariationalBicomplex.pdf

[31] M. C. Nucci, A. M. Arthurs, “On the Inverse Problem of Calculus for Fourth-Order Equations”, Proc. R. Soc. A

[32] P. Guha, A. Ghose Choudhury, “On Lagrangians and Hamiltonians of Some Fourth-Order Nonlinear Kudryashov ODEs”, Commun. Nonlin. Sci. Numer. Simul., 16 (2011), 3914–3922 | DOI | MR | Zbl

[33] P. Guha, Ghose Choudhury A., A. S. Fokas, Hamiltonians and Conjugate Hamiltonians of Some Fourth-Order Nonlinear ODEs, Preprint | MR

[34] N. A. Kudryashov, “Double Bäcklund Transformations and Special Integrals for the KII Hierarchy”, Phys. Lett. A, 273 (2000), 194–202 | DOI | MR | Zbl