@article{ZVMMF_2012_52_4_a8,
author = {A. Babaaghaie and H. Mesgarani},
title = {Numerical solution of {Fredholm} integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {696},
year = {2012},
volume = {52},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/}
}
TY - JOUR AU - A. Babaaghaie AU - H. Mesgarani TI - Numerical solution of Fredholm integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2012 SP - 696 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/ LA - en ID - ZVMMF_2012_52_4_a8 ER -
%0 Journal Article %A A. Babaaghaie %A H. Mesgarani %T Numerical solution of Fredholm integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2012 %P 696 %V 52 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/ %G en %F ZVMMF_2012_52_4_a8
A. Babaaghaie; H. Mesgarani. Numerical solution of Fredholm integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/
[1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Univ. Press, Cambridge, 1997 | MR
[2] E. Quak, “Trigonometric Wavelets for Hermite Interpolation”, Math. Comp., 65 (1996), 683–722 | DOI | MR | Zbl
[3] J. Prestin, “Trigonometric Wavelets”, Wavelet and Allied Topics, eds. P. K. Jain et al., Narosa, New Delhi, 2001, 183–217 | MR
[4] C. K. Chui, H. N. Mhaskar, “On Trigonometric Wavelets”, Constr. Approx., 9 (1993), 167–190 | DOI | MR | Zbl
[5] Y. Liu, F. Qin, Y. H. Liu, Z. Cen, “A Daubechies Wavelet-Based Method for Elastic Problems”, Eng. Anal. Bound. Elem., 34 (2010), 114–121 | DOI | MR | Zbl
[6] G. G. Walter, X. Shen, Wavelets and Other Orthogonal Systems, Chapman and Hall/CRC, Boca Raton, 2001 | MR
[7] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992 | MR
[8] I. Cohen, I. Daubechies, J. C. Feauveau, “Biorthogonal Basis of Compactly Supported Wavelets”, Comm. Pure Appl. Math., 45 (1992), 485–560 | DOI | MR | Zbl
[9] E. Isaacson, H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1994 | MR
[10] D. F. Walnut, An Introduction to Wavelet Analysis, Birkhäuser, Boston, 2002 | MR | Zbl
[11] A. Boggess, F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, Wiley, Hoboken, New Jersey, 2009 | MR | Zbl
[12] W. Themistoclakis, “Trigonometric Wavelet Interpolation in Besov Spaces”, Facta Univ. (Nis) Ser. Math. Inf., 14 (1999), 49–70 | MR | Zbl
[13] X. Z. Liang, M. C. Liu, X. J. Che, “Solving Second Kind Integral Equations by Galerkin Methods with Continuous Orthogonal Wavelets”, J. Comput. Appl. Math., 136 (2001), 149–161 | DOI | MR | Zbl
[14] I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets”, Commun. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl
[15] M. Maleknejad, M. Rabbani, “A Wavelet Petrov–Galerkin Method for Solving Integro-Inferential Equations”, Int. J. Comput. Math., 86 (2009), 1572–1590 | DOI | MR | Zbl
[16] M. Maleknejad, M. Karami, “Numerical Solution of Nonlinear Fredholm Integral Equations by Using Multiwavelets in the Petrov–Galerkin Method”, Appl. Math. Comput., 168 (2005), 102–110 | DOI | MR | Zbl
[17] M. Maleknejad, M. Karami, “Using the WPG Method for Solving Integral Equations of the Second Kind”, Appl. Math. Comput., 166 (2005), 123–130 | DOI | MR | Zbl
[18] A. Karoui, “Wavelets: Properties and Approximate Solution of a Second Kind Integral Equation”, Comput. Math. Appl., 46 (2003), 263–277 | DOI | MR | Zbl
[19] C. A. Micchelli, Yuesheng Xu, “Wavelet Galerkin Methods for Second-Kind Integral Equations”, J. Comput. Appl. Math., 86 (1997), 251–270 | DOI | MR | Zbl
[20] Z. Chen, C. A. Micchelli, “The Petrov–Galerkin Method for Second Kind Integral Equations. II: Multiwavelet Schemes”, Adv. Comput. Math., 7 (1997), 199–233 | DOI | MR | Zbl
[21] Z. Shan, Q. Du, “Trigonometric Wavelet Method for Some Elliptic Boundary Value Problems”, J. Math. Anal. Appl., 344 (2008), 1105–1119 | DOI | MR | Zbl
[22] M. Q. Chen, C. Hwang, “The Computation of Wavelet–Galerkin Approximation on a Bounded Interval”, Int. J. Numer. Methods Eng., 39 (1996), 2921–2944 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[23] R. D. Grigorieff, I. H. Sloan, “Spline Petrov–Galerkin Methods with Quadrature”, Numer. Funct. Anal. Optim., 17 (1996), 755–784 | DOI | MR | Zbl