Numerical solution of Fredholm integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we employ trigonometric wavelet bases to numerical solution of Fredholm integral equations of first kind in Holder space. Employment of Galerkin method for trigonometric wavelets in Fredholm integral equations of first kind has resulted in occurrence of two-dimensional trigonometric wavelets. Here, we present the convergence of two-dimensional trigonometric wavelets in numerical solution in Holder space $C^\alpha([a,b])$
@article{ZVMMF_2012_52_4_a8,
     author = {A. Babaaghaie and H. Mesgarani},
     title = {Numerical solution of {Fredholm} integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {696},
     year = {2012},
     volume = {52},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/}
}
TY  - JOUR
AU  - A. Babaaghaie
AU  - H. Mesgarani
TI  - Numerical solution of Fredholm integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2012
SP  - 696
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/
LA  - en
ID  - ZVMMF_2012_52_4_a8
ER  - 
%0 Journal Article
%A A. Babaaghaie
%A H. Mesgarani
%T Numerical solution of Fredholm integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2012
%P 696
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/
%G en
%F ZVMMF_2012_52_4_a8
A. Babaaghaie; H. Mesgarani. Numerical solution of Fredholm integral equations of first kind by two-dimensional trigonometric wavelets in holder space $C^\alpha([a,b])$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 52 (2012) no. 4. http://geodesic.mathdoc.fr/item/ZVMMF_2012_52_4_a8/

[1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Univ. Press, Cambridge, 1997 | MR

[2] E. Quak, “Trigonometric Wavelets for Hermite Interpolation”, Math. Comp., 65 (1996), 683–722 | DOI | MR | Zbl

[3] J. Prestin, “Trigonometric Wavelets”, Wavelet and Allied Topics, eds. P. K. Jain et al., Narosa, New Delhi, 2001, 183–217 | MR

[4] C. K. Chui, H. N. Mhaskar, “On Trigonometric Wavelets”, Constr. Approx., 9 (1993), 167–190 | DOI | MR | Zbl

[5] Y. Liu, F. Qin, Y. H. Liu, Z. Cen, “A Daubechies Wavelet-Based Method for Elastic Problems”, Eng. Anal. Bound. Elem., 34 (2010), 114–121 | DOI | MR | Zbl

[6] G. G. Walter, X. Shen, Wavelets and Other Orthogonal Systems, Chapman and Hall/CRC, Boca Raton, 2001 | MR

[7] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992 | MR

[8] I. Cohen, I. Daubechies, J. C. Feauveau, “Biorthogonal Basis of Compactly Supported Wavelets”, Comm. Pure Appl. Math., 45 (1992), 485–560 | DOI | MR | Zbl

[9] E. Isaacson, H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1994 | MR

[10] D. F. Walnut, An Introduction to Wavelet Analysis, Birkhäuser, Boston, 2002 | MR | Zbl

[11] A. Boggess, F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, Wiley, Hoboken, New Jersey, 2009 | MR | Zbl

[12] W. Themistoclakis, “Trigonometric Wavelet Interpolation in Besov Spaces”, Facta Univ. (Nis) Ser. Math. Inf., 14 (1999), 49–70 | MR | Zbl

[13] X. Z. Liang, M. C. Liu, X. J. Che, “Solving Second Kind Integral Equations by Galerkin Methods with Continuous Orthogonal Wavelets”, J. Comput. Appl. Math., 136 (2001), 149–161 | DOI | MR | Zbl

[14] I. Daubechies, “Orthonormal Bases of Compactly Supported Wavelets”, Commun. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl

[15] M. Maleknejad, M. Rabbani, “A Wavelet Petrov–Galerkin Method for Solving Integro-Inferential Equations”, Int. J. Comput. Math., 86 (2009), 1572–1590 | DOI | MR | Zbl

[16] M. Maleknejad, M. Karami, “Numerical Solution of Nonlinear Fredholm Integral Equations by Using Multiwavelets in the Petrov–Galerkin Method”, Appl. Math. Comput., 168 (2005), 102–110 | DOI | MR | Zbl

[17] M. Maleknejad, M. Karami, “Using the WPG Method for Solving Integral Equations of the Second Kind”, Appl. Math. Comput., 166 (2005), 123–130 | DOI | MR | Zbl

[18] A. Karoui, “Wavelets: Properties and Approximate Solution of a Second Kind Integral Equation”, Comput. Math. Appl., 46 (2003), 263–277 | DOI | MR | Zbl

[19] C. A. Micchelli, Yuesheng Xu, “Wavelet Galerkin Methods for Second-Kind Integral Equations”, J. Comput. Appl. Math., 86 (1997), 251–270 | DOI | MR | Zbl

[20] Z. Chen, C. A. Micchelli, “The Petrov–Galerkin Method for Second Kind Integral Equations. II: Multiwavelet Schemes”, Adv. Comput. Math., 7 (1997), 199–233 | DOI | MR | Zbl

[21] Z. Shan, Q. Du, “Trigonometric Wavelet Method for Some Elliptic Boundary Value Problems”, J. Math. Anal. Appl., 344 (2008), 1105–1119 | DOI | MR | Zbl

[22] M. Q. Chen, C. Hwang, “The Computation of Wavelet–Galerkin Approximation on a Bounded Interval”, Int. J. Numer. Methods Eng., 39 (1996), 2921–2944 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[23] R. D. Grigorieff, I. H. Sloan, “Spline Petrov–Galerkin Methods with Quadrature”, Numer. Funct. Anal. Optim., 17 (1996), 755–784 | DOI | MR | Zbl